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Abstract. A neural network model for a mechanism of 
visual pattern recognition is proposed in this paper. 
The network is self-organized by "learning without a 
teacher", and acquires an ability to recognize stimulus 
patterns based on the geometrical similarity (Gestalt) 
of their shapes without affected by their positions. This 
network is given a nickname "neocognitron". After 
completion of self-organization, the network has a 
structure similar to the hierarchy model of the visual 
nervous system proposed by Hubel and Wiesel. The 
network consists of an input layer (photoreceptor 
array) followed by a cascade connection of a number of 
modular structures, each of which is composed of two 
layers of cells connected in a cascade. The first layer of 
each module consists of "S-cells', which show charac- 
teristics similar to simple cells or lower order hyper- 
complex cells, and the second layer consists of 
"C-cells" similar to complex cells or higher order 
hypercomplex cells. The afferent synapses to each 
S-cell have plasticity and are modifiable. The network 
has an ability of unsupervised learning: We do not 
need any "teacher" during the process of self- 
organization, and it is only needed to present a set of 
stimulus patterns repeatedly to the input layer of the 
network. The network has been simulated on a digital 
computer. After repetitive presentation of a set of 
stimulus patterns, each stimulus pattern has become to 
elicit an output only from one of the C-cells of the last 
layer, and conversely, this C-cell has become selectively 
responsive only to that stimulus pattern. That is, none 
of the C-cells of the last layer responds to more than 
one stimulus pattern. The response of the C-cells of the 
last layer is not affected by the pattern's position at all. 
Neither is it affected by a small change in shape nor in 
size of the stimulus pattern. 

1. Introduction 

The mechanism of pattern recognition in the brain is 
little known, and it seems to be almost impossible to 

reveal it only by conventional physiological experi- 
ments. So, we take a slightly different approach to this 
problem. If we could make a neural network model 
which has the same capability for pattern recognition 
as a human being, it would give us a powerful clue to 
the understanding of the neural mechanism in the 
brain. In this paper, we discuss how to synthesize a 
neural network model in order to endow it an ability of 
pattern recognition like a human being. 

Several models were proposed with this intention 
(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971; 
Fukushima, 1975). The response of most of these 
models, however, was severely affected by the shift in 
position and/or by the distortion in shape of the input 
patterns. Hence, their ability for pattern recognition 
was not so high. 

In this paper, we propose an improved neural 
network model. The structure of this network has been 
suggested by that of the visual nervous system of the 
vertebrate. This network is self-organized by "learning 
without a teacher", and acquires an ability to recognize 
stimulus patterns based on the geometrical similarity 
(Gestalt) of their shapes without affected by their 
position nor by small distortion of their shapes. 

This network is given a nickname "neocognitron"l, 
because it is a further extention of the "cognitron", 
which also is a self-organizing multilayered neural 
network model proposed by the author before 
(Fukushima, 1975). Incidentally, the conventional 
cognitron also had an ability to recognize patterns, but 
its response was dependent upon the position of the 
stimulus patterns. That is, the same patterns which 
were presented at different positions were taken as 
different patterns by the conventional cognitron. In the 
neocognitron proposed here, however, the response of 
the network is little affected by the position of the 
stimulus patterns. 

1 Preliminary report of the neocognitron already appeared else- 
where (Fukushima, 1979a, b) 
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The neocognitron has a multilayered structure, too. 
It also has an ability of unsupervised learning: We do 
not need any "teacher" during the process of self- 
organization, and it is only needed to present a set of 
stimulus patterns repeatedly to the input layer of the 
network. After completion of self-organization, the 
network acquires a structure similar to the hierarchy 
model of the visual nervous system proposed by Hubel 
and Wiesel (1962, 1965). 

According to the hierarchy model by Hubel and 
Wiesel, the neural network in the visual cortex has a 
hierarchy structure : LGB (lateral geniculate 
body)--*simple cells-.complex cells~lower order hy- 
percomplex cells--*higher order hypercomplex cells. It 
is also suggested that the neural network between 
lower order hypercomplex cells and higher order hy- 
percomplex cells has a structure similar to the network 
between simple cells and complex cells. In this hier- 
archy, a cell in a higher stage generally has a tendency 
to respond selectively to a more complicated feature of 
the stimulus pattern, and, at the same time, has a larger 
receptive field, and is more insensitive to the shift in 
position of the stimulus pattern. 

It is true that the hierarchy model by Hubel and 
Wiesel does not hold in its original form. In fact, there 
are several experimental data contradictory to the 
hierarchy model, such as monosynaptic connections 
from LGB to complex cells. This would not, however, 
completely deny the hierarchy model, if we consider 
that the hierarchy model represents only the main 
stream of information flow in the visual system. Hence, 
a structure similar to the hierarchy model is introduced 
in our model. 

Hubel and Wiesel do not tell what kind of cells 
exist in the stages higher than hypercomplex cells. 
Some cells in the inferotemporal cortex (i.e. one of the 
association areas) of the monkey, however, are report- 
ed to respond selectively to more specific and more 
complicated features than hypercomplex cells (for ex- 
ample, triangles, squares, silhouettes of a monkey's 
hand, etc.), and their responses are scarcely affected by 
the position or the size of the stimuli (Gross et al., 
1972; Sato et al., 1978). These cells might correspond 
to so-called "grandmother cells". 

Suggested by these physiological data, we extend 
the hierarchy model of Hubel and Wiesel, and hy- 
pothesize the existance of a similar hierarchy structure 
even in the stages higher than hypercomplex cells. In 
the extended hierarchy model, the cells in the highest 
stage are supposed to respond only to specific stimulus 
patterns without affected by the position or the size of 
the stimuli. 

The neocognitron proposed here has such an ex- 
tended hierarchy structure. After completion of self- 
organization, the response of the cells of the deepest 

layer of our network is dependent only upon the shape 
of the stimulus pattern, and is not affected by the 
position where the pattern is presented. That is, the 
network has an ability of position-invariant pattern- 
recognition. 

In the field of engineering, many methods for 
pattern recognition have ever been proposed, and 
several kinds of optical character readers have already 
been developed. Although such machines are superior 
to the human being in reading speed, they are far 
inferior in the ability of correct recognition. Most of 
the recognition method used for the optical character 
readers are sensitive to the position of the input 
pattern, and it is necessary to normalize the position of 
the input pattern beforehand. It is very difficult to 
normalize the position, however, if the input pattern is 
accompanied with some noise or geometrical distor- 
tion. So, it has long been desired to find out an 
algorithm of pattern recognition which can cope with 
the shift in position of the input pattern. The algorithm 
proposed in this paper will give a drastic solution also 
to this problem. 

2. Structure of the Network 

As shown in Fig. 1, the neocognitron consists of a 
cascade connection of a number of modular structures 
preceded by an input layer U o. Each of the modular 
structure is composed of two layers of cells connected 
in a cascade. The first layer of the module consists of 
"S-cells", which correspond to simple cells or lower 
order hypercomplex cells according to the classifi- 
cation of Hubel and Wiesel. We call it S-layer and 
denote the S-layer in the /-th module as Us~. The 
second layer of the module consists of "C-cells", which 
correspond to complex cells or higher order hyper- 
complex cells. We call it C-layer and denote the 
C-layer in the/-th module as Uc~. In the neocognitron, 
only the input synapses to S-cells are supposed to have 
plasticity and to be modifiable. 

The input layer U 0 consists of a photoreceptor 
array. The output of a photoreceptor is denoted by 
u0(n ), where n=(nx, ny ) is the two-dimensional co- 
ordinates indicating the location of the cell. 

S-cells or C-cells in a layer are sorted into sub- 
groups according to the optimum stimulus features of 
their receptive fields. Since the cells in each subgroup 
are set in a two-dimensional array, we call the sub- 
group as a "cell-plane". We will also use a terminology, 
S-plane and C-plane representing cell-planes consist- 
ing of S-cells and C-cells, respectively. 

It is assumed that all the cells in a single cell-plane 
have input synapses of the same spatial distribution, 
and only the positions of the presynaptic cells are 
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron 

shifted in parallel from cell to cell. Hence, all the cells in 
a single cell-plane have receptive fields of the same 
function, but at different positions. 

We will use notations Us~(k~,n ) to represent the 
output of an S-cell in the kr th  S-plane in the l-th 
module, and Ucl(k~, n) to represent the output of a C-cell 
in the kr th  C-plane in that module, where n is the two- 
dimensional co-ordinates representing the position of 
these cell's receptive fields in the input layer. 

Figure 2 is a schematic diagram illustrating the 
interconnections between layers. Each tetragon drawn 
with heavy lines represents an S-plane or a C-plane, 
and each vertical tetragon drawn with thin lines, in 
which S-planes or C-planes are enclosed, represents an 
S-layer or a C-layer. 

In Fig. 2, a cell of each layer receives afferent 
connections from the cells within the area enclosed by 
the elipse in its preceding layer. To be exact, as for the 
S-cells, the elipses in Fig. 2 does not show the connect- 
ing area but the connectable area to the S-cells. That is, 
all the interconnections coming from the elipses are 
not always formed, because the synaptic connections 
incoming to the S-cells have plasticity. 

In Fig. 2, for the sake of simplicity of the figure, 
only one cell is shown in each cell-plane. In fact, all the 
cells in a cell-plane have input synapses of the same 
spatial distribution as shown in Fig. 3, and only the 
positions of the presynaptic cells are shifted in parallel 
from cell to cell. 

R3 ~I 

modifioble synapses 

) unmodifiable synopses 

Since the cells in the network are interconnected in 
a cascade as shown in Fig. 2, the deeper the layer is, the 
larger becomes the receptive field of each cell of that 
layer. The density of the cells in each cell-plane is so 
determined as to decrease in accordance with the 
increase of the size of the receptive fields. Hence, the 
total number of the cells in each cell-plane decreases 
with the depth of the cell-plane in the network. In the 
last module, the receptive field of each C-cell becomes 
so large as to cover the whole area of input layer U0, 
and each C-plane is so determined as to have only one 
C-cell. 

The S-cells and C-cells are excitatory cells. That is, 
all the efferent synapses from these cells are excitatory. 
Although it is not shown in Fig. 2, we also have 

Fig. 3. Illustration showing the input interconnections to the cells 
within a single cell-plane 

Fig. 2. Schematic diagram illustrating the 
interconnections between layers in the 
neocognitron 
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inhibitory cells Vsl(n ) and Vcl(n ) in S-layers and 
C-layers. 

Here, we are going to describe the outputs of the 
cells in the network with numerical expressions. 

All the neural cells employed in this network is of 
analog type. That is, the inputs and the output of a cell 
take non-negative analog values proportional to the 
pulse density (or instantaneous mean frequency) of the 
firing of the actual biological neurons. 

S-cells have shunting-type inhibitory inputs simi- 
larly to the cells employed in the conventional cognit- 
ron (Fukushima, 1975). The output of an S-cell in the 
kz-th S-plane in the/-th module is described below. 

Kz- 1 

I!+ ~ ~ az(kl-1, v, kt).Ucl_l(k,_x, n+  v) 
Usl(k z, n) = r 1. qo k,_l = 1 v~s, 2rl 

1 + ~ .  bl(kl).Vc,_ l(n) 

where 

{oX  ~ ~oEx] = x < 0 .  (2) 

In case of l=  1 in (1), Ucl_ l(kt_ i, n) stands for uo(n), and 
we have K z_ 1 = 1. 

Here, al(k z_ 1, v, kl) and bz(kl) represent the efficien- 
cies of the excitatory and inhibitory synapses, re- 
spectively. As was described before, it is assumed that 
all the S-cells in the same S-plane have identical set of 
input synapses. Hence, al(k l_ 1, v, kl) and bl(kz) do not 
contain any argument representing the position n of 
the receptive field of the cell Usl(kl, n). 

Parameter r z in (1) prescribes the efficacy of the 
inhibitory input. The larger the value of r z is, more 
selective becomes cell's response to its specific feature 
(Fukushima, 1978, 1979c). Therefore, the value of r z 
should be determined with a compromise between the 
ability to differentiate similar patterns and the ability 
to tolerate the distortion of the pattern's shape. 

The inhibitory cell VC/_l(n), which have in- 
hibitory synaptic connections to this S-cell, has an 
r.m.s.-type (root-mean-square type) input-to-output 
characteristic. That is, 

1 /  Kz-1 

Vct l (n)=l /k ,~ lV 1- ~s, ~cz-l(v)'u2l-l(kl-l'n+v)' (3) 

where cz l(v) represents the efficiency of the unmodifi- 
able excitatory synapses, and is set to be a monotoni- 
cally decreasing function of [v]. The employment of 
r.m.s.-type cells is effective for endowing the network 
with an ability to make reasonable evaluation of the 
similarity between the stimulus patterns. Its effective- 
ness was analytically proved for the conventional 
cognitron (Fukushima, 1978, 1979c), and the same 
discussion can be applied also to this network. 

As is seen from (t) and (3), the area from which a 
single cell receives its input, that is, the summation 
range S z of v is determined to be identical for both cells 
Ust(kl, n) and Vcl_ l(n). 

The size of this range SI is set to be small for the 
foremost module (/=1) and to become larger and 
larger for the hinder modules (in accordance with the 
increase of I). 

After completion of self-organization, the pro- 
cedure of which will be discussed in the next chapter, a 
number of feature extracting cells of the same function 
are formed in parallel within each S-plane, and only 

(1) 

the positions of their receptive fields are different to 
each other. Hence, if a stimulus pattern which elicits a 
response from an S-cell is shifted in parallel in its 
position on the input layer, another S-cell in the same 
S-plane will respond instead of the first cell. 

The synaptic connections from S-layers to C-layers 
are fixed and unmodifiable. As is illustrated in Fig. 2, a 
C-cell have synaptic connections from a group of 
S-cells in its corresponding S-plane (i.e. the preceding 
S-plane with the same k~-number as that of the C-cell). 
The efficiencies of these synaptic connections are so 
determined that the C-cell will respond strongly when- 
ever at least one S-cell in its connecting area yields a 
large output. Hence, even if a stimulus pattern which 
has elicited a large response from a C-cell is shifted a 
little in position, the C-cell will keep responding as 
before, because another presynaptic S-cell will become 
to respond instead. 

Quantitatively, C-cells have shunting-type inhib- 
itory inputs similarly as S-cells, but their outputs 
show a saturation characteristic. The output of a C-cell 
in the k/-th C-plane in the/-th module is given by the 
equation below. 

ii + ~ dt(v)'Usl(kz, n+v) ll 
Ucl(kt, n) = ~ wD, 1 + Vst(n ) , (4) 

where 

[x ]  = q~[x/(c~ + x) ] .  (5) 

The inhibitory cell Vsz(n ), which sends inhibitory sig- 
nals to this C-cell and makes up the system of lateral 
inhibition, yields an output proportional to the 
(weighted) arithmetic mean of its inputs : 

1 Kz 
Vs'(n) = ~ k ~ ,  ~;, d'(v)'us'(k''n+v)" (6) 
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In (4) and (6), the efficiency of the unmodifiable 
excitatory synapse dz(v ) is set to be a monotonically 
decreasing function of Iv[ in the same way as q(v), and 
the connecting area D~ is small in the foremost module 
and becomes larger and larger for the hinder modules. 
The parameter a in (5) is a positive constant which 
specifies the degree of saturation of C-cells. 

3. Self-organization of the Network 

The self-organization of the neocognitron is performed 
by means of "learning without a teacher". During the 
process of self-organization, the network is repeatedly 
presented with a set of stimulus patterns to the input 
layer, but it does not receive any other information 
about the stimulus patterns. 

As was discussed in Chap. 2, one of the basic 
hypotheses employed in the neocognitron is the as- 
sumption that all the S-cells in the same S-plane have 
input synapses of the same spatial distribution, and 
that only the positions of the presynaptic cells shift in 
parallel in accordance with the shift in position of 
individual S-cells' receptive fields. 

It is not known whether modifiable synapses in the 
real nervous system are actually self-organized always 
keeping such conditions. Even if it is assumed to be 
true, neither do we know by what mechanism such a 
self-organization goes on. The correctness of this hy- 
pothesis, however, is suggested, for example, from the 
fact that orderly synaptic connections are formed 
between retina and optic rectum not only in the initial 
development in the embryo but also in regeneration in 
the adult amphibian or fish: In regeneration after 
removal of half of the tectum, the whole retina come to 
make a compressed orderly projection upon the re- 
maining half tectum (e.g. review article by Meyer and 
Sperry, 1974). 

In order to make self-organization under the con- 
ditions mentioned above, the modifiable synapses are 
reinforced by the following procedures. 

At first, several "representative" S-cells are selected 
from each S-layer every time when a stimulus pattern 
is presented. The representative is selected among the 
S-cells which have yielded large outputs, but the 
number of the representatives is so restricted that more 
than one representative are not selected from any 
single S-plane. The detailed procedure for selecting the 
representatives is given later on. 

The input synapses to a representative S-cell are 
reinforced in the same manner as in the case of r.m.s.- 
type cognitron 2 (Fukushima, 1978, 1979c). All the 

2 Qualitatively, the procedure of self-organization for r.m.s.-type 
cognitron is the same as that for the conventional cognitron 
(Fukushima, 1975) 

other S-cells in the S-plane, from which the repre- 
sentative is selected, have their input synapses rein- 
forced by the same amounts as those for their repre- 
sentative. These relations can be quantitatively ex- 
pressed as follows. 

Let cell UsSq, fi) be selected as a representative. The 
modifiable synapses al(k l_ 1, v, ~l) and bl(/~l), which are 
afferent to the S-cells of the kcth S-plane, are rein- 
forced by the amount shown below: 

Aal(kz_ l, v,[q)=ql.cz_ l(v).Ucl_ l(k~_ l,fi + v), (7) 

Abt([q) = (qz/2). Vcl_ l(fi), (8) 

where ql is a positive constant prescribing the speed of 
reinforcement. 

The cells in the S-plane from which no repre- 
sentative is selected, however, do not have their input 
synapses reinforced at all. 

In the initial state, the modifiable excitatory syn- 
apses al(k l_ 1, v, kt) are set to have small positive values 
such that the S-cells show very weak orientation 
selectivity, and that the preferred orientation of the 
S-cells differ from S-plane to S-plane. That is, the 
initial values of these modifiable synapses are given by 
a function of v, (kl/Kz) and [k z_ 1/Kl_ 1 --k]K~l, but they 
don't have any randomness. The initial values of 
modifiable inhibitory synapses b~(kt) are set to be zero. 

The procedure for selecting the representatives is 
given below. It resembles, in some sense, to the pro- 
cedure with which the reinforced cells are selected in 
the conventional cognitron (Fukushima, 1975). 

At first, in an S-layer, we watch a group of S-cells 
whose receptive fields are situated within a small area 
on the input layer. If we arrange the S-planes of an 
S-layer in a manner shown in Fig. 4, the group of 
S-cells constitute a column in an S-layer. Accordingly, 
we call the group as an "S-column". An S-column 
contains S-cells from all the S-planes. That is, an 
S-column contains various kinds of feature extracting 
cells in it, but the receptive fields of these cells are 
situated almost at the same position. Hence, the idea of 
S-columns defined here closely resembles that of 
"hypercolumns" proposed by Hubel and Wiesel (1977). 
There are a lot of such S-columns in a single S-layer. 
Since S-columns have overlapping with one another, 
there is a possibility that a single S-cell is contained in 
two or more S-columns. 

From each S-column, every time when a stimulus 
pattern is presented, the S-cell which is yielding the 
largest output is chosen as a candidate for the repre- 
sentatives. Hence, there is a possibility that a number 
of candidates appear in a single S-plane. If two or more 
candidates appear in a single S-plane, only the one 
which is yielding the largest output among them is 
selected as the representative from that S-plane. In 
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Fig. 4. Relation between S-planes and S-columns within an S-layer 

case only one candidate appears in an S-plane, the 
candidate is unconditionally determined as the repre- 
sentative from that S-plane. If no candidate appears in 
an S-plane, no representative is selected from that 
S-plane. 

Since the representatives are determined in this 
manner, each S-plane becomes selectively sensitive to 
one of the features of the stimulus patterns, and there is 
not a possibility of formation of redundant con- 
nections such that two or more S-planes are used for 
detection of one and the same feature. Incidentally, 
representatives are selected only from a small number 
of S-planes at a time, and the rest of the S-planes are to 
send representatives for other stimulus patterns. 

As is seen from these discussions, if we consider 
that a single S-plane in the neocognitron corresponds 
to a single excitatory cell in the conventional cognitron 
(Fukushima, 1975), the procedures of reinforcement in 
the both systems are analogous to each other. 

4. Rough Sketches of the Working of the Network 

In order to help the understanding of the principles 
with which the neocognitron performs pattern re- 
cognition, we will make rough sketches of the working 
of the network in the state after completion of self- 
organization. The description in this chapter, however, 
is not so strict, because the purpose of this chapter is 
only to show the outline of the working of the network. 

At first, let us assume that the neocognitron has 
been self-organized with repeated presentations of 
stimulus patterns like "A", "B", "C" and so on. In the 
state when the self-organization has been completed, 
various feature-extracting cells are formed in the net- 
work as shown in Fig. 5. (It should be noted that Fig. 5 
shows only an example. It does not mean that exactly 
the same feature extractors as shown in this figure are 
always formed in this network.) 

Here, if pattern "A" is presented to the input layer 
U o, the cells in the network yield outputs as shown in 
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Fig. 5. An example of the interconnections between ceils and the 
response of the cells after completion of self-organization 

Fig. 5. For instance, S-plane with k 1 = 1 in layer Us1 
consists of a two-dimensional array of S-cells which 
extract A-shaped features. Since the stimulus pattern 
"A" contains A-shaped feature at the top, an S-cell 
near the top of this S-plane yields a large output as 
shown in the enlarged illustration in the lower part of 
Fig. 5. 

A C-cell in the succeeding C-plane (i.e. C-plane in 
layer Ucl with k~ = 1) has synaptic connections from a 
group of S-cells in this S-plane. For example, the C-cell 
shown in Fig. 5 has synaptic connections from the 
S-cells situated within the thin-lined circle, and it 
responds whenever at least one of these S-cells yields a 
large output. Hence, the C-cell responds to a A-shaped 
feature situated in a certain area in the input layer, and 
its response is less affected by the shift in position of 
the stimulus pattern than that of presynaptic S-cells. 
Since this C-plane consists of an array of such C-cells, 
several C-cells which are situated near the top of this 
C-plane respond to the A-shaped feature contained in 
the stimulus pattern "A". In layer Ucl, besides this 
C-plane, we also have C-planes which extract features 
with shapes l ike/- ,  ~, and so on. 

In the next module, each S-cell receives signals 
from all the C-planes of layer Ucl. For example, the 
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S-cell shown in Fig. 5 receives signals from C-cells 
within the thin-lined circles in layer Ucl. Its input 
synapses have been reinforced in such a way that this 
S-cell responds only when A-shaped, /--shaped and 
~-shaped features are presented in its receptive field 
with configuration like A �9 Hence, pattern "A" elicits 
a large response from this S-cell, which is situated a 
little above the center of this S-plane. If positional 
relation of these three features are changed beyond 
some allowance, this S-cell stops responding. This 
S-cell also checks the condition that other features 
such as ends-of-lines, which are to be extracted in 
S-planes with k 1 =4,  5 and so on, are not presented in 
its receptive field. The inhibitory cell Vc~, which makes 
inhibitory synaptic connection to this S-cell, plays an 
important role in checking the absence of such irrel- 
evant features. 

Since operations of this kind are repeatedly applied 
through a cascade connection of modular structures of 
S- and C-layers, each individual cell in the network 
becomes to have wider receptive field in accordance 
with the increased number of modules before it, and, at 
the same time, becomes more tolerant of shift in 
position of the input pattern. Thus, one C-cell in the 
last layer Uc3 yields a large response only when, say, 
pattern "A" is presented to the input layer, regardless 
of the pattern's position. Although only one cell which 
responds to pattern "A" is drawn in Fig. 5, cells which 
respond to other patterns, such as "B',  "C" and so on, 
have been formed in parallel in the last layer. 

From these discussions, it might be felt as if an 
enormously large number of feature-extracting cell- 
planes become necessary with the increase in the 
number of input patterns to be recognized. However, it 
is not the case. With the increase in the number of 
input patterns, it becomes more and more probable 
that one and the same feature is contained in common 
in more than two different kinds of patterns. Hence, 
each cell-plane, especially the one near the input layer, 
will generally be used in common for the feature 
extraction, not from only one pattern, but from nu- 
merous kinds of patterns. Therefore, the required 
number of cell-planes does not increase so much in 
spite of the increase in the number of patterns to be 
recognized. 

Viewed from another angle, this procedure for 
pattern recognition can be interpreted as identical in 
its principle to the information processing mentioned 
below. 

That is, in the neocognitron, the input pattern is 
compared with learned standard patterns, which have 
been recorded beforehand in the network in the form 
of spatial distribution of the synaptic connections. This 
comparison is not made by a direct pattern matching 
in a wide visual field, but by piecewise pattern match- 

ings in a number of small visual fields. Only when the 
difference between both patterns does not exceed a 
certain limit in any of the small visual fields, the 
neocognitron judges that these patterns coincide with 
each other. 

Such comparison in small visual fields is not 
performed in a single stage, but similar processes are 
repeatedly applied in a cascade. That is, the output 
from one stage is used as the input to the next stage. In 
the comparison in each of these stages, the allowance 
for the shift in pattern's position is increased little by 
little. The size of the visual field (or the size of the 
receptive fields) in which the input pattern is compared 
with standard patterns, becomes larger in a higher 
stage. In the last stage, the visual field is large enough 
to observe the whole information of the input pattern 
simultaneously. 

Even if the input pattern does not match with a 
learned standard pattern in all parts of the large visual 
field simultaneously, it does not immediately mean 
that these patterns are of different categories. Suppose 
that the upper part of the input pattern matches with 
that of the standard pattern situated at a certain 
location, and that, at the same time, the lower part of 
this input pattern matches with that of the same 
standard pattern situated at another location. Since 
the pattern matching in the first stage is tested in 
parallel in a number of small visual fields, these two 
patterns are still regarded as the same by the neocog- 
nitron. Thus, the neocognitron is able to make a 
correct pattern recognition even if input patterns have 
some distortion in shape. 

5. Computer Simulation 

The neural network proposed here has been simulated 
on a digital computer. In the computer simulation, we 
consider a seven layered network: Uo-~ Us1 -~ Ucl-~ Us2 
-~Uc2-~Us3-~Uc3. That is, the network has three 
stages of modular structures preceded by an input layer. 
The number of cell-planes Kz in each layer is 24 for all 
the layers except U o. The numbers of excitatory cells in 
these seven layers are: 16x 16 in Uo, 16x 16x24  in 
Us1, 10x 10x 24in Ucl, 8 • 8 x 24in Us2, 6 x  6 x  24in 
Uc2, 2 x 2 • 24 in Us3, and 24 in Uc3. In the last layer 
Uc3, each of the 24 cell-planes contains only one 
excitatory cell (i.e. C-cell). 

The number of cells contained in the connectable 
area S t is always 5 x 5 for every S-layer. Hence, the 
number of input synapses 3 to each S-cell is 5 x 5 in 
layer Us~ and 5 x 5 x 24 in layers Usz and Us3, because 

3 It does not necessarily mean that all of these input synapses are 
always fully reinforced. In usual situations, only some of these input 
synapses are reinforced, and the rest of them remains in small values 
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U0 

a b c d e f g h 

Fig. 6. Some examples of distorted stimulus patterns which the 
neocognitron has correctly recognized, and the response of the final 
layer of the network 

Fig. 7. A display of an example of the response of all the individual 
cells in the neocognitron 

layers Us2 and Us3 are preceded by C-layers consisting 
of 24 cell-planes. Although the number of cells con- 
tained in S t is the same for every S-layer, the size of S~, 
which is projected to and observed at layer U0, 
increases for the hinder layers because of decrease in 
density of the cells in a cell-plane. 

The number of excitatory input synapses to each 
C-cell is 5 x 5 in layers Ucl and Uc2, and is 2 • 2 in 
layer Uc3. Every S-column has a size such that it 
contains 5 x 5 x 24 cells for layers Usi and Usz, and 
2 x 2 x 24 cells for layer Usa. That is, it contains 5 x 5, 
5 x 5, and 2 x 2 cells from each S-plane, in layers Usl, 
Us2, and Us3, respectively. 

Parameter rl, which prescribe the efficacy of in- 
hibitory input to an S-cell, is set such that r 1 =4.0 and 
r 2 = r 3 = 1.5. The efficiency of unmodifiable excitatory 
synapses c~ l(v) is determined so as to satisfy the 
equation 
Kt-i 

Z 2 Cl- 1(v) = 1. (9) 
kz- 1 = 1 vest 

The parameter % which prescribe the speed of rein- 
forcement, is adjusted such that ql = l . 0  and 
q2=qa=16.0.  The parameter e, which specifies the 
degree of saturation, is set to be c~=0.5. 

In order to self-organize the network, we have 
presented five stimulus patterns "0", "1", "2", "3", and 
"4", which are shown in Fig. 6 (a) (the leftmost column 
in Fig. 6), repeatedly to the input layer U 0. The 
positions of presentation of these stimulus patterns 
have been randomly shifted at every presentation 4. 

Each of the five stimulus patterns has been pre- 
sented 20 times to the network. By that time, self- 
organization of the network has almost been 
completed. 

Each stimulus pattern has become to elicit an 
output only from one of the C-cells of layer Uc3, and 
conversely, this C-cell has become selectively respon- 
sive only to that stimulus pattern. That is, none of the 
C-cells of layer Uc3 responds to more than one 
stimulus pattern. It has also been confirmed that the 
response of cells of layer Uc3 is not affected by the shift 
in position of the stimulus pattern at all. Neither is it 
affected by a slight change of the shape or the size of 
the stimulus pattern. 

Figure 6 shows some examples of distorted stim- 
ulus patterns which the neocognitron has correctly 
recognized. All the stimulus patterns (a)~(g) in each 
row of Fig. 6 have elicited the same response to C-cells 
of layer Uc3 as shown in (h) (i.e. the rightmost patterns 
in each row). That is, the neocognitron has correctly 
recognized these patterns without affected by shift in 
position like (a)~ (c), nor by distortion in shape or size 
like (d)~ (f), nor by some insufficiency of the patterns 
or some noise like (g). 

Figure7 displays how individual cells in the 
neocognitron have responded to stimulus pattern "4". 
Thin-lined squares in the figure stand for individual 
cell-planes (except in layer Uc3 in which each cell- 
plane contains only one cell). The magnitude of the 
output of each individual cell is indicated by the 
darkness of each small square in the figure. (The size of 
the square does not have a special meaning here.) 

4 It does not matter, of course, even if the patterns are presented 
always at the same position. On the contrary, the self-organization 
generally becomes easier if the position of pattern presentation is 
stationary than it is shifted at random. Thus, the experimental result 
under more difficult condition is shown here 



In order to check whether the neocognitron can 
acquire the ability of correct pattern recognition even 
for a set of stimulus patterns resembling each other, 
another experiment has been made. In this experiment, 
the ueocognitron has been self-organized using four 
stimulus patterns "X", "Y", "T", and "Z". These four 
patterns resemble each other in shape: For instance, 
the upper parts of "X" and "Y" have an identical 
shape, and the diagonal lines in "Z" and "X" have an 
identical inclination, and so on. After repetitive pre- 
sentation of these resembling patterns, the neocognit- 
ron has also acquired the ability to discriminate them 
correctly. 

In a third experiment, the number of stimulus 
patterns has been increased, and ten different patterns 
"0", "1", "2", .... "9" have been presented during the 
process of self-organization. Even in the case of ten 
stimulus patterns, it is possible to self-organize the 
neocognitron so as to recognize these ten patterns 
correctly, provided that various parameters in the 
network are properly adjusted and that the stimulus 
patterns are skillfully presented during the process of 
self-organization. In this case, however, a small de- 
viation of the values of the parameters, or a small 
change of the way of pattern presentation, has criti- 
cally influenced upon the ability of the self-organized 
network. This would mean that the number of cell- 
planes in the network (that is, 24 cell-planes in each 
layer) is not sufficient enough for the recognition of ten 
different patterns. If the number of cell-planes is 
further increased, it is presumed that the neocognitron 
would steadily make correct recognition of these ten 
patterns, or even much more number of patterns. The 
computer simulation for the case of more than 24 cell- 
planes in each layer, however, has not been made yet, 
because of the lack of memory capacity of our 
computer. 
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recognition in the brain, but he proposes it as a 
working hypothesis for some neural mechanisms of 
visual pattern recognition. 

As was stated in Chap. 1, the hierarchy model of 
the visual nervous system proposed by Hubel and 
Wiesel is not considered to be entirely correct. It is a 
future problem to modify the structure of the neocog- 
nitron lest it should be contradictory to the structure 
of the visual system which is now being revealed. 

It is conjectured that, in the human brain, the 
process of recognizing familiar patterns such as al- 
phabets of our native language differs from that of 
recognizing unfamiliar patterns such as foreign al- 
phabets which we have just begun to learn. The 
neocognitron probably presents a neural network 
model corresponding to the former case, in which we 
recognize patterns intuitively and immediately. It 
would be another future problem to model the neural 
mechanism which works in deciphering illegible letters. 

The algorithm of information processing proposed 
in this paper is of great use not only as an inference 
upon the mechanism of the brain but also to the field 
of engineering. One of the largest and long-standing 
difficulties in designing a pattern-recognizing machine 
has been the problem how to cope with the shift in 
position and the distortion in shape of the input 
patterns. The neocognitron proposed in this paper 
gives a drastic solution to this difficulty. We would be 
able to extremely improve the performance of pattern 
recognizers if we introduce this algorithm in the design 
of the machines. The same principle can also be 
applied to auditory information processing such as 
speech recognition if the spatial pattern (the envelope 
of the vibration) generated on the basilar membrane in 
the cochlea is considered as the input signal to the 
network. 

6. Conclusion 

The "neocognitron" proposed in this paper has an 
ability to recognize stimulus patterns without affected 
by shift in position nor by a small distortion in shape 
of the stimulus patterns. It also has a function of self- 
organization, which progresses by means of "learning 
without a teacher". If a set of stimulus patterns are 
repeatedly presented to it, it gradually acquires the 
ability to recognize these patterns. It is not necessary 
to give any instructions about the categories to which 
the stimulus patterns should belong. The performance 
of the neocognitron has been demonstrated by com- 
puter simulation. 

The author does not advocate that the neocognit- 
ron is a complete model for the mechanism of pattern 
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