Using the Triangle Inequality to Accelerate k-Means

CharlesElkan

Department of Computer Science and Engineering
University of California, San Diego
La Jolla, California 92093-0114

Abstract

The k-means algorithm is by far the most widely
used method for discovering clusters in data. \We
show how to accelerate it dramatically, while
still always computing exactly the same result
as the standard algorithm. The accelerated al-
gorithm avoids unnecessary distance calculations
by applying the triangle inequality in two differ-
ent ways, and by keeping track of lower and up-
per bounds for distances between points and cen-
ters. Experiments show that the new algorithm
is effective for datasets with up to 1000 dimen-
sions, and becomes more and more effective as
the number £ of clusters increases. For & > 20
it is many times faster than the best previously
known accelerated k-means method.

1. Introduction

The most common method for finding clusters in data used
in applications is the algorithm known as k-means. k-
means is considered a fast method because it is not based
on computing the distances between all pairs of data points.
However, the algorithm is still slow in practice for large
datasets. The number of distance computations is nke
where n is the number of data points, & is the number of
clusters to be found, and e is the number of iterations re-
quired. Empirically, e grows sublinearly with k&, n, and the
dimensionality d of the data.

The main contribution of this paper is an optimized version
of the standard k-means method, with which the number
of distance computations is in practice closer to n than to
nke.

The optimized algorithm is based on the fact that most dis-
tance calculations in standard k-means are redundant. If a
point is far away from a center, it is not necessary to cal-
culate the exact distance between the point and the center
in order to know that the point should not be assigned to

ELKAN@CS.UCSD.EDU

this center. Conversely, if a point is much closer to one
center than to any other, calculating exact distances is not
necessary to know that the point should be assigned to the
first center. We show below how to make these intuitions
concrete.

We want the accelerated k-means algorithm to be usable
wherever the standard algorithm is used. Therefore, we
need the accelerated algorithm to satisfy three properties.
First, it should be able to start with any initial centers, so
that all existing initialization methods can continue to be
used. Second, given the same initial centers, it should al-
ways produce exactly the same final centers as the standard
algorithm. Third, it should be able to use any black-box
distance metric, so it should not rely for example on opti-
mizations specific to Euclidean distance.

Our algorithm in fact satisfies a condition stronger than the
second one above: after each iteration, it produces the same
set of center locations as the standard k-means method.
This stronger property means that heuristics for merging or
splitting centers (and for dealing with empty clusters) can
be used together with the new algorithm. The third condi-
tion is important because many applications use a domain-
specific distance metric. For example, clustering to identify
duplicate alphanumeric records is sometimes based on al-
phanumeric edit distance (Monge & Elkan, 1996), while
clustering of protein structures is often based on an expen-
sive distance function that first rotates and translates struc-
tures to superimpose them. Even without a domain-specific
metric, recent work shows that using a non-traditional L,
norm with 0 < p < 1 is beneficial when clustering in a
high-dimensional space (Aggarwal et al., 2001).

This paper is organized as follows. Section 2 explains how
to use the triangle inequality to avoid redundant distance
calculations. Then Section 3 presents the new algorithm,
and Section 4 discusses experimental results on six datasets
of dimensionality 2 to 1000. Section 5 outlines possible im-
provements to the method, while Section 6 reviews related
work, and Section 7 explains three open research issues.

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

2. Applying the triangle inequality

Our approach to accelerating k-means is based on the tri-
angle inequality: for any three points z, y, and z, d(z, z) <
d(x,y)+d(y, z). This is the only “black box” property that
all distance metrics d possess.

The difficulty is that the triangle inequality gives upper
bounds, but we need lower bounds to avoid calculations.
Let = be a point and let b and ¢ be centers; we need to
know that d(x,c) > d(z,b) in order to avoid calculating
the actual value of d(z, ¢).

The following two lemmas show how to use the triangle
inequality to obtain useful lower bounds.

Lemma 1: Let z be a point and let b and ¢ be centers. If
d(b,c) > 2d(z,b) thend(z,c) > d(z,b).

Proof: We know that d(b,c) < d(b,z) + d(z,c). So
d(b,c) — d(z,b) < d(z,c). Consider the left-hand side:
d(b,c) — d(z,b) > 2d(z,b) — d(x,b) = d(z,b). So
d(z,b) <d(z,c).m

Lemma 2; Let z be a point and let b and ¢ be centers.
Then d(z,¢) > max{0,d(z,b) — d(b,c)}.

Proof: We know that d(z,b) < d(z,c¢) + d(b,c), so
d(z,c) > d(z,b) — d(b,c). Also, d(z,¢) > 0. m

Note that Lemmas 1 and 2 are true for any three points,
not just for a point and two centers, and the statement of
Lemma 2 can be strengthened in various ways.

We use Lemma 1 as follows. Let z be any data point, let
c be the center to which z is currently assigned, and let ¢’
be any other center. The lemma says that if $d(c,c') >
d(z,c), thend(z,c') > d(x,c). In this case, it is not nec-
essary to calculate d(z, ¢').

Suppose that we do not know d(z,c) exactly, but we do
know an upper bound u such that u > d(z,¢). Then we
need to compute d(z, ¢') and d(z, c) only if u > %d(c,c').

If u < 1 mind(c, ¢') where the minimum is over all ¢’ # ¢,
then the point 2 must remain assigned to the center ¢, and
all distance calculations for z can be avoided.

Lemma 2 is applied as follows. Let = be any data point,
let b be any center, and let b be the previous version of the
same center. (That is, suppose the centers are numbered 1
through &, and b is center number j; then b’ is center num-
ber j in the previous iteration.) Suppose that in the previous
iteration we knew a lower bound !’ such that d(z,b") > I'.
Then we can infer a lower bound [for the current iteration:

d(z,b) > max{0,d(z,b") — d(b,b")}
> max{0,’ — d(b,b')} = L.

Informally, if I’ is a good approximation to the previous

distance between z and the jth center, and this center has
moved only a small distance, then [is a good approxima-
tion to the updated distance.

The algorithm below is the first k-means variant that uses
lower bounds, as far as we know. It is also the first al-
gorithm that carries over varying information from one k-
means iteration to the next. According to the authors of
(Kanungo et al., 2000): “The most obvious source of in-
efficiency in [our] algorithm is that it passes no informa-
tion from one stage to the next. Presumably in the later
stages of Lloyd’s algorithm, as the centers are converging
to their final positions, one would expect that the vast ma-
jority of the data points have the same closest center from
one stage to the next. A good algorithm would exploit this
coherence to improve running time.” The algorithm in this
paper achieves this goal. One previous algorithm also re-
uses information from one k-means iteration in the next,
but that method, due to (Judd et al., 1998), does not carry
over lower or upper bounds.

Suppose u(z) > d(z,c¢) is an upper bound on the dis-
tance between x and the center ¢ to which z is currently
assigned, and suppose I(z,c¢') < d(z, ') is a lower bound
on the distance between z and some other center ¢'. If
u(z) < I(z,) then d(z,) < u(z) < I(z,c') < d(z,c)
S0 it is necessary to calculate neither d(x,¢) nor d(z,c').
Note that it will never be necessary in this iteration of the
accelerated method to compute d(z, ¢'), but it may be nec-
essary to compute d(z, ¢) exactly because of some other
center ¢ for which u(z) < I(z,c") is not true.

3. Thenew algorithm

Putting the observations above together, the accelerated k-
means algorithm is as follows.

First, pick initial centers. Set the lower bound I(z,c) = 0
for each point 2 and center ¢. Assign each z to its closest
initial center ¢(z) = argmin,d(z,c), using Lemma 1 to
avoid redundant distance calculations. Each time d(z, c)
is computed, set I(z,c) = d(z,c). Assign upper bounds
u(z) = min. d(z, c).

Next, repeat until convergence:

1. For all centers ¢ and ¢’, compute d(c, ¢'). For all cen-

ters ¢, compute s(c) = 1 ming. d(c, ¢').

2. Identify all points z such that u(z) < s(c(x)).

3. For all remaining points 2 and centers ¢ such that
(i) ¢ # c(z) and
(i) u(z) > l(z,c) and
(iii) u(z) > $d(c(x),c):

3a. If r(z) then compute d(z,c(z)) and assign
r(x) = false. Otherwise, d(z, ¢(z)) = u(x).
3b. Ifd(z,c(x)) > I(z,c)
or d(z,c(x)) > 1d(c(z),c) then
Compute d(z, c)
If d(z, c) < d(z,c(x)) then assign ¢(z) = c.

4. For each center ¢, let m(c) be the mean of the points
assigned to c.

5. For each point and center ¢, assign
l(z,¢) = max{l(z,c) — d(c,m(c)),0}.
6. For each point z, assign

u(z) = u(z) + d(m(c(z)), c(x))
r(z) = true.

7. Replace each center ¢ by m(c).

In step (3), each time d(z, ¢) is calculated for any z and ¢,
its lower bound is updated by assigning I(z,c) = d(z,c).
Similarly, u(z) is updated whenever ¢(z) is changed or
d(z,c(x)) is computed. In step (3a), if r(z) is true
then u(x) is out-of-date, i.e. it is possible that u(z) #
d(z,c(z)). Otherwise, computing d(z,c(x)) is not nec-
essary. Step (3b) repeats the checks from (ii) and (iii) in
order to avoid computing d(z, ¢) if possible.

The fundamental reason why the algorithm above is effec-
tive in reducing the number of distance calculations is that
at the start of each iteration, the upper bounds u () and the
lower bounds I(z, ¢) are tight for most points z and centers
c. If these bounds are tight at the start of one iteration, the
updated bounds tend to be tight at the start of the next it-
eration, because the location of most centers changes only
slightly, and hence the bounds change only slightly.

The initialization step of the algorithm assigns each point
to its closest center immediately. This requires relatively
many distance calculations, but it leads to exact upper
bounds u(z) for all z and to exact lower bounds I(z, ¢) for
many (z, ¢) pairs. An alternative initialization method is to
start with each point arbitrarily assigned to one center. The
initial values of u(z) and I(c, x) are then based on distances
calculated to this center only. With this approach, the ini-
tial number of distance calculations is only n, but «(z) and
I(c,) are much less tight initially, so more distance calcu-
lations are required later. (After each iteration each point is
always assigned correctly to its closest center, regardless of
how inaccurate the lower and upper bounds are at the start
of the iteration.) Informal experiments suggest that both
initialization methods lead to about the same total number
of distance calculations.

Logically, step (2) is redundant because its effect is
achieved by condition (iii). Computationally, step (2) is

beneficial because if it eliminates a point 2 from further
consideration, then comparing u(z) to I(z, c) for every ¢
separately is not necessary. Condition (iii) inside step (3)
is beneficial despite step (2), because u(z) and c(z) may
change during the execution of step (3).

We have implemented the algorithm above in Matlab.
When step (3) is implemented with nested loops, the outer
loop can be over z or over c. For efficiency in Matlab and
similar languages, the outer loop should be over ¢ since
k < n typically, and the inner loop should be replaced by
vectorized code that operates on all relevant z collectively.

Step 4 computes the new location of each cluster center c.
Setting m(c) to be the mean of the points assigned to c is
appropriate when the distance metric in use is Euclidean
distance. Otherwise, m(c) may be defined differently. For
example, with k-medians the new center of each cluster is
a representative member of the cluster.

4. Experimental results

This section reports the results of running the new al-
gorithm on six large datasets, five of which are high-
dimensional. The datasets are described in Table 1, while
Table 2 gives the results.

Our experimental design is similar to the design of (Moore,
2000), which is the best recent paper on speeding up the
k-means algorithm for high-dimensional data. However,
there is only one dataset used in (Moore, 2000) for which
the raw data are available and enough information is given
to allow the dataset to be reconstructed. This dataset is
called “covtype.” Therefore, we also use five other publicly
available datasets. None of the datasets have missing data.

In order to make our results easier to reproduce, we use a
fixed initialization for each dataset X. The first center is
initialized to be the mean of X. Subsequent centers are
initialized according to the “furthest first” heuristic: each
new center is argmax, ¢ x min.cc d(z, c) where C'is the
set of initial centers chosen so far (Dasgupta, 2002).

Following the practice of past research, we measure the
performance of an algorithm on a dataset as the number
of distance calculations required. All algorithms that ac-
celerate k-means incur overhead to create and update aux-
iliary data structures. This means that speedup compared
to k-means is always less in clock time than in number of
distance calculations. Our algorithm reduces the number of
distance calculations so dramatically that its overhead time
is often greater than the time spent on distance calculations.
However, the total execution time is always much less than
the time required by standard k-means. The overhead of
the [and u data structures will be much smaller with a C
implementation than with the Matlab implementation used

name cardinality | dimensionality | description

birch 100000 2 | 10 by 10 grid of Gaussian clusters, DS1 in (Zhang et al., 1996)
covtype 150000 54 | remote soil cover measurements, after (Moore, 2000)

kddcup 95413 56 | KDD Cup 1998 data, un-normalized

mnist50 60000 50 | random projection of NIST handwritten digit training data
mnist784 60000 784 | original NIST handwritten digit training data

random 10000 1000 | uniform random data

Table 1. Datasets used in experiments.

k=3 k=20 k =100

birch iterations 17 38 56
standard 5.100e+06 7.600e+07 5.600e+08

fast 4.495e+05 1.085e+06 1.597e+06

speedup 11.3 70.0 351

covtype iterations 18 256 152
standard 8.100e+06 7.680e+08 2.280e+09

fast 9.416e+05 7.147e+06 7.353e+06

speedup 8.60 107 310

kddcup iterations 34 100 325
standard 9.732e+06 1.908e+08 3.101e+09

fast 6.179e+05 3.812e+06 1.005e+07

speedup 15.4 50.1 309

mnist50 iterations 38 178 217
standard 6.840e+06 2.136e+08 1.302e+09

fast 1.573e+06 9.353e+06 3.159e+07

speedup 4.35 22.8 41.2

mnist784 iterations 63 60 165
standard 1.134e+07 7.200e+07 9.900e+08

fast 1.625e+06 7.396e+06 3.055e+07

speedup 6.98 9.73 32.4

random iterations 52 33 18
standard 1.560e+06 6.600e+06 1.800e+07

fast 1.040e+06 3.020e+06 5.348e+06

speedup 1.50 2.19 3.37

Table 2. Rows labeled “standard” and “fast” give the number of distance calculations performed by the unaccelerated k-means algorithm
and by the new algorithm. Rows labeled “speedup” show how many times faster the new algorithm is, when the unit of measurement is
distance calculations.

for the experiments reported here. For this reason, clock
times are not reported.

Perhaps the most striking observation to be made from Ta-
ble 2 is that the relative advantage of the new method in-
creases with k. The number of distance calculations grows
only slowly with & and with e (the number of passes over
the data, called “iterations” in Table 2). So much redundant
computation is eliminated that the total number of distance
calculations is closer to n than to nke as for standard k-
means.

A related observation is that for & > 20 we obtain a
much better speedup than with the anchors method (Moore,
2000). The speedups reported by Moore for the “covtype”
dataset are 24.8, 11.3, and 19.0 respectively for cluster-
ing with 3, 20, and 100 centers. The speedups we obtain
are 8.60, 107, and 310. We conjecture that the improved
speedup for k£ > 20 arises in part from using the actual
cluster centers as adaptive “anchors,” instead of using a set
of anchors fixed in preprocessing. The worse speedup for
k = 3 remains to be explained.

Another striking observation is that the new method re-
mains effective even for data with very high dimension-
ality. Moore writes “If there is no underlying structure in
the data (e.qg. if it is uniformly distributed) there will be lit-
tle or no acceleration in high dimensions no matter what
we do. This gloomy view, supported by recent theoreti-
cal work in computational geometry (Indyk et al., 1999),
means that we can only accelerate datasets that have in-
teresting internal structure.” While this claim is almost
certainly true asymptotically as the dimension of a dataset
tends to infinity, our results on the “random” dataset sug-
gest that worthwhile speedup can still be obtained up to at
least 1000 dimensions. As expected, the more clustered a
dataset is, the greater the speedup obtained. Random pro-
jection makes clusters more Gaussian (Dasgupta, 2000),
so speedup is better for the “mnist50” dataset than for the
“mnist784” dataset.

5. Limitations and extensions

During each iteration of the algorithm proposed here, the
lower bounds (z, ¢) are updated for all points z and centers
c. These updates take O(nk) time, so the time complexity
of the algorithm remains at least O(nke) even though the
number of distance calculations is roughly O(n) only. It
may be possible to avoid updating many lower bounds in
most iterations, and hence to reduce the nominal complex-
ity of the algorithm. Note that if a point z is eliminated
from further consideration in step (2), then I(z,c) is not
used at all.

In some clustering applications, & > d. This is the case
in particular for vector quantization for image compres-

sion. For these applications the memory required to store
the lower bounds I(z, ¢) may be the dominant storage cost.
However, the entire matrix I(x,c) never needs to be kept
in main memory. If the data are streamed into memory at
each iteration from disk, then the I(z, ¢) matrix can also be
streamed into memory in synchrony.

Moreover, the algorithm remains beneficial even if lower
bounds are not used, so condition (ii) becomes u(z) >
d(z, c), where d(z, ¢) is computed if necessary.

When the algorithm is used with a distance function that
is fast to evaluate, such as an L, norm, then in practice
the time complexity of the algorithm is dominated by the
bookkeeping used to avoid distance calculations. There-
fore, future work should focus on reducing this overhead.

The point above is especially true because a Euclidean dis-
tance (or other L,, distance) in d dimensions can often be
compared to a known minimum distance in o(d) time. The
simple idea is to stop evaluating the new squared distance
when the sum of squares so far is greater than the known
squared minimum distance. (This suggestion is usually as-
cribed to (Bei & Gray, 1985), but in fact it is first men-
tioned in (Cheng et al., 1984).) Distance calculations can
be stopped even quicker if axes of high variation are con-
sidered first. Axes of maximum variation may be found
by principal component analysis (PCA) (McNames, 2000),
but the preprocessing cost of PCA may be prohibitive.

At the end of each iteration, centers must be recomputed.
Computing means takes O(nd) time independent of k.
This can be reduced to O((k + b)d) time where b is the
number of points assigned to a different center during the
iteration. Typically b < n in all except the first few itera-
tions. As mentioned above, the algorithm of this paper can
also be used when centers are not recomputed as means.

During each iteration, distances between all centers must
be recomputed, so the minimum number of distance com-
putations per iteration is k(k — 1)/2. For large k, as in
vector quantization, this may be a dominant expense. Fu-
ture research should investigate the best way to reduce
this cost by computing approximations for inter-center dis-
tances that are large.

6. Related work

Many papers have been published on the topic of acceler-
ating the k-means algorithm, in several different research
communities. Some of the most important of these papers
are described briefly in this section. Most of the papers
cited below only cite previous papers from the same re-
search community, so one of the contributions of this paper
is an attempt to collect references that otherwise cannot be
found in one place. All the relevant papers that we know

of can be found by following chains of citations from the
papers mentioned here.

A version of the k-means algorithm was first published by
(MacQueen, 1965). The history of different variants of the
algorithm is discussed by (Faber, 1994). The basic algo-
rithm used most commonly today, and used in this paper,
where centers are recomputed once after each pass through
the data, is usually attributed to a paper written by Lloyd in
1957 but not published until 1982 (Lloyd, 1982). However,
that paper only discusses quantization (i.e. clustering) for
some special one-dimensional cases.

The central operation in the k-means algorithm is to find
the nearest center for each data point. At least three gen-
eral approaches have been developed for accelerating this
operation.

One general approach is based on locality-sensitive hash-
ing (Indyk & Motwani, 1998), but these methods are not
well-suited for finding exact nearest neighbors. A second
general approach organizes points into trees where nearby
points are in the same subtree. Approaches using kd-trees
or similar have been proposed independently by several au-
thors (Ramasubramanian & Paliwal, 1990; Deng & Moore,
1993; Pelleg & Moore, 1999; Alsabti et al., 1998; Kanungo
et al., 2000), but these methods are not effective for d > 10
about. By using metric trees Moore’s “anchors” method is
effective for much larger d (Moore, 2000).

The third general approach to the nearest neighbor task is to
use triangle inequalities to eliminate unnecessary distance
calculations. Using Lemma 1 above appears to have been
proposed first by (Hodgson, 1988), then again indepen-
dently by (Orchard, 1991; Montolio et al., 1992; Phillips,
2002) among others. Our application of Lemma 1 is more
fine-grained than previous applications. The lemma says
that if d(z,c) < id(c,c'), then d(z,c) < d(z,c'). The
algorithm of (Hodgson, 1988) only considers the center ¢’
that is closest to c. If d(z,¢) < d(c,c")/2 for this ¢’ then
x remains assigned to ¢. Otherwise, no distance calcula-
tions are eliminated. Our algorithm applies the lemma for
every center different from ¢, so for most = some distance
calculations are avoided, even if others must be performed.

Variants of Lemma 2 have been used by many authors,
starting with (Burkhard & Keller, 1973; Vidal, 1986), but
using the lemma to update a lower bound on the distance
between moving points appears to be novel.

The triangle inequality applies to all distance metrics.
Many papers have also been published on speeding up &-
means or nearest neighbor search using inequalities that are
specific for Euclidean distance, for example (Wu & Lin,
2000; Mielikainen, 2002).

Many papers have been published on on approximating k-

means quickly; well-known papers include (Zhang et al.,
1996; Farnstrom et al., 2000). However, the exact algo-
rithm presented here is so fast that it is not clear when an
approximate algorithm is necessary.

7. Open issues

A basic open theoretical question is whether one can find a
lower bound on how many distance calculations are needed
by any implementation of exact k-means. Can one con-
struct an adversary argument showing that if any algo-
rithm omits certain distance computations, then an oppo-
nent can choose values for these distances that, together
with all other distances, satisfy the triangle inequality, yet
also make the output of the algorithm incorrect?

Perhaps the most fundamental practical question for future
work is how to find better clusterings, i.e. better local op-
tima. Now that we can run k-means fast, how can we use
additional computation to get answers of better quality?

One common approach to finding better local optima is to
run k-means with many different initializations. The al-
gorithm above allows many more initializations to be tried
in the same total time. Another widespread heuristic for
finding better clusterings is to run k-means with a large
value for k, and then to merge or prune the clusters ob-
tained into a good clustering with smaller k. Since our al-
gorithm makes the running time of k-means sublinear in k,
it is especially useful for this approach.

A third important open question is how to accelerate clus-
tering methods that use soft assignment of points to cen-
ters. Two important methods in this class are Gaussian
expectation-maximization (EM) (Dempster et al., 1977)
and harmonic k-means (Hamerly & Elkan, 2002). In these
methods each center is recomputed as the weighted aver-
age of all points, where weights are related to distances.
Can triangle inequalities (or other inequalities!) be applied
to obtain upper bounds on weights that are close to zero,
and hence to obtain approximate soft assignment solutions
quickly?

Acknowledgments

Thanks to Sanjoy Dasgupta, Ari Frank, Greg Hamerly,
Doug Turnbull, and others for providing useful comments
and datasets.

References

Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001). On
the surprising behavior of distance metrics in high dimensional
spaces. Database Theory - ICDT 2001, 8th International Con-
ference, London, UK, January 4-6, 2001, Proceedings (pp.
420-434). Springer.

Alsabti, K., Ranka, S., & Singh, V. (1998). An efficient k-means
clustering algorithm. IPPS/SPDP Workshop on High Perfor-
mance Data Mining. IEEE Computer Society Press.

Bei, C.-D., & Gray, R. M. (1985). An improvement of the min-
imum distortion encoding algorithm for vector quantization.
IEEE Transactions on Communications, 33, 1132-1133.

Burkhard, W. A., & Keller, R. M. (1973). Some approaches to
best-match file searching. Communications of the ACM, 16,
230-236.

Cheng, D.-Y., Gersho, A., Ramamurthi, B., & Shoham, . (1984).
Fast search algorithms for vector quantization and pattern
matching. International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 9.11.1-9.11.4). IEEE Com-
puter Society Press.

Dasgupta, S. (2000). Experiments with random projection. Six-
teenth Conference on Uncertainty in Artificial Intelligence
(UAI’00) (pp. 143-151). Morgan Kaufmann.

Dasgupta, S. (2002). Performance guarantees for hierarchical
clustering. Fifteenth Annual Conference on Computational
Learning Theory (COLT’02) (pp. 351-363). Springer Verlag.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum
likelihood from incomplete data via the EM algorithm. Journal
of the Royal Statistical Society, 39, 1-38.

Deng, K., & Moore, A. W. (1993). Multiresolution instance-based
learning. Proceedings of the Fourteenth International Joint
Conference on Atrtificial Intelligence (pp. 1233-1239). San
Francisco: Morgan Kaufmann.

Faber, V. (1994). Clustering and the continuous k-means algo-
rithm. Los Alamos Science, 138-144.

Farnstrom, F., Lewis, J., & Elkan, C. (2000). Scalability for clus-
tering algorithms revisited. ACM SIGKDD Explorations, 2,
51-57.

Hamerly, G., & Elkan, C. (2002). Alternatives to the k-means
algorithm that find better clusterings. Proceedings of the
Eleventh International Conference on Information and Knowl-
edge Management (pp. 600-607). McLean, Virginia, USA:
ACM Press.

Hodgson, M. E. (1988). Reducing computational requirements of
the minimum-distance classifier. Remote Sensing of Environ-
ments, 25, 117-128.

Indyk, P., Amir, A., Efrat, A., & Samet, H. (1999). Efficient al-
gorithms and regular data structures for dilation, location and
proximity problems. Proceedings of the Annual Symposium on
Foundations of Computer Science (pp. 160-170).

Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors:
Towards removing the curse of dimensionality. Proceedings of
the Annual ACM Symposium on the Theory of Computing (pp.
604-613).

Judd, D., McKinley, P. K., & Jain, A. K. (1998). Large-scale
parallel data clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20, 871-876.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Sil-
verman, R., & Wu, A. Y. (2000). The analysis of a simple
k-means clustering algorithm. ACM Symposium on Computa-
tional Geometry (pp. 100-109). ACM Press.

Lloyd, S. P. (1982). Least squares quantization in PCM. |IEEE
Transactions on Information Theory, 28, 129-137.

MacQueen, J. B. (1965). On convergence of k-means and parti-
tions with minimum average variance. Annals of Mathematical
Statistics, 36, 1084. Abstract only.

McNames, J. (2000). Rotated partial distance search for faster
vector quantization encoding. IEEE Signal Processing Letters,
7,244-246.

Mielikainen, J. (2002). A novel full-search vector quantization
algorithm based on the law of cosines. IEEE Signal Processing
Letters, 9, 175-176.

Monge, A. E., & Elkan, C. P. (1996). The field matching prob-
lem: Algorithms and applications. Proceedings of the Second
International Conference on Knowledge Discovery and Data
Mining (pp. 267-270). Portland, Oregon: AAAI Press (dis-
tributed by MIT Press).

Montolio, P., Gasull, A., Monte, E., Torres, L., & Marques, F.
(1992). Analysis and optimization of the k-means algorithm
for remote sensing applications. In A. Sanfeliu (Ed.), Pattern
recognition and image analysis, 155-170. World Scientific.

Moore, A. W. (2000). The anchors hierarchy: Using the triangle
inequality to survive high dimensional data. Proceedings of
the Twelfth Conference on Uncertainty in Artificial Intelligence
(pp. 397-405). Morgan Kaufmann.

Orchard, M. T. (1991). A fast nearest-neighbor search algorithm.
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP) (pp. 2297-2300). IEEE Computer Society
Press.

Pelleg, D., & Moore, A. (1999). Accelerating exact k-means al-
gorithms with geometric reasoning. Proceedings of the Fifth
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD’99) (pp. 277-281).

Phillips, S. J. (2002). Acceleration of k-means and related clus-
tering algorithms. Fourth International Workshop on Algo-
rithm Engineering and Experiments (ALENEX) (pp. 166-177).
Springer Verlag.

Ramasubramanian, V., & Paliwal, K. K. (1990). A general-
ized optimization of the & — d tree for fast nearest-neighbour
search. Fourth IEEE Region 10 International Conference
(TENCON’89) (pp. 565-568). IEEE Computer Society Press.

Vidal, E. (1986). An algorithm for finding nearest neighbours
in (approximately) constant average time. Pattern Recognition
Letters, 4, 145-157.

Wu, K.-S., & Lin, J.-C. (2000). Fast VQ encoding by an efficient
kick-out condition. IEEE Transactions on Circuits and Systems
for Video Technology, 10, 59-62.

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: an
efficient data clustering method for very large databases. Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data (pp. 103-114). ACM Press.

