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Abstract 

An on-line recursive algorithm for training support vector machines, one 
vector at a time, is presented. Adiabatic increments retain the Kuhn­
Tucker conditions on all previously seen training data, in a number 
of steps each computed analytically. The incremental procedure is re­
versible, and decremental "unlearning" offers an efficient method to ex­
actly evaluate leave-one-out generalization performance. Interpretation 
of decremental unlearning in feature space sheds light on the relationship 
between generalization and geometry of the data. 

1 Introduction 

Training a support vector machine (SVM) requires solving a quadratic programming (QP) 
problem in a number of coefficients equal to the number of training examples. For very 
large datasets, standard numeric techniques for QP become infeasible. Practical techniques 
decompose the problem into manageable subproblems over part of the data [7, 5] or, in the 
limit, perform iterative pairwise [8] or component-wise [3] optimization. A disadvantage 
of these techniques is that they may give an approximate solution, and may require many 
passes through the dataset to reach a reasonable level of convergence. An on-line alterna­
tive, that formulates the (exact) solution for £ + 1 training data in terms of that for £ data and 
one new data point, is presented here. The incremental procedure is reversible, and decre­
mental "unlearning" of each training sample produces an exact leave-one-out estimate of 
generalization performance on the training set. 

2 Incremental SVM Learning 

Training an SVM "incrementally" on new data by discarding all previous data except their 
support vectors, gives only approximate results [II). In what follows we consider incre­
mentallearning as an exact on-line method to construct the solution recursively, one point 
at a time. The key is to retain the Kuhn-Tucker (KT) conditions on all previously seen data, 
while "adiabatically" adding a new data point to the solution. 

2.1 Kuhn-Thcker conditions 

In SVM classification, the optimal separating function reduces to a linear combination 
of kernels on the training data, f(x) = E j QjYjK(xj, x) + b, with training vectors Xi 

and corresponding labels Yi = ±l. In the dual formulation of the training problem, the 
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Figure 1: Soft-margin classification SVM training. 

coefficients ai are obtained by minimizing a convex quadratic objective function under 
constraints [12] 
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with Lagrange multiplier (and offset) b, and with symmetric positive definite kernel matrix 
Qij = YiyjK(Xi,Xj). The first-order conditions on W reduce to the Kuhn-Tucker (KT) 
conditions: 
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ai = 0 
0< ai < C (2) 
ai = C 
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which partition the training data D and corresponding coefficients {ai, b}, i = 1, ... i, in 
three categories as illustrated in Figure 1 [9]: the set S of margin support vectors strictly 
on the margin (yd(Xi) = 1), the set E of error support vectors exceeding the margin (not 
necessarily misc1assified), and the remaining set R of (ignored) vectors within the margin. 

2.2 Adiabatic increments 

The margin vector coefficients change value during each incremental step to keep all el­
ements in D in equilibrium, i.e., keep their KT conditions satisfied. In particular, the KT 
conditions are expressed differentially as: 

~9i Qic~ac + L Qij~aj + Yi~b, 'Vi E D U {c} (4) 
jES 

o = Ye~ae + LYj~aj (5) 
jES 

where a e is the coefficient being incremented, initially zero, of a "candidate" vector outside 
D. Since 9i == 0 for the margin vector working set S = {Sl, .. . Sis}, the changes in 
coefficients must satisfy 
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Thus, in equilibrium 

t!.b (3t!.ac 
t!.aj = (3j t!.ac , 

with coefficient sensitivities given by 

\::Ij E D 
(8) 
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where R = Q-l, and (3j == 0 for all j outside S. Substituted in (4), the margins change 
according to: 

t!.9i = 'Yit!.ac, \::Ii E D U {c} (11) 

with margin sensitivities 

'Yi = Qic + L Qij(3j + Yi(3, 
jES 

and 'Yi == 0 for all i in S. 

2.3 Bookkeeping: upper limit on increment t!.ac 

(12) 

It has been tacitly assumed above that t!.ac is small enough so that no element of D moves 
across S, E and/or R in the process. Since the aj and 9i change with a c through (9) 
and (11), some bookkeeping is required to check each of the following conditions, and 
determine the largest possible increment t!.ac accordingly: 

1. gc :::; 0, with equality when c joins S; 

2. a c :::; C, with equality when c joins E; 

3. 0:::; aj :::; C , Vj E S, with equality 0 when j transfers from S to R, and equality C when 
j transfers from S to E; 

4. gi :::; 0, Vi E E, with equality when i transfers from E to S; 

5. gi :::: 0, Vi E R , with equality when i transfers from R to S. 

2.4 Recursive magic: R updates 

To add candidate c to the working margin vector set S, R is expanded as: 

The same formula applies to add any vector (not necessarily the candidate) c to S, with 
parameters (3, (3j and 'Yc calculated as (10) and (12). 
The expansion ofR, as incremental learning itself, is reversible. To remove a margin vector 
k from S, R is contracted as: 

Rij +- Rij - Rkk -lRik Rkj 

where index 0 refers to the b-term. 

\::Ii,j E S U {O}; i,j :f. k (14) 

The R update rules (13) and (14) are similar to on-line recursive estimation of the covari­
ance of (sparsified) Gaussian processes [2]. 
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Figure 2: Incremental learning. A new vector, initially for O:c = 0 classified with negative 
margin 9c < 0, becomes a new margin or error vector. 

2.5 Incremental procedure 

LeU! --* i+ 1, by adding point c (candidate margin or error vector) to D : Dl+l = DiU{ c}. 
Then the new solution {o:f+1, bi +1 }, i = 1, ... i + 1 is expressed in terms of the present 
solution {o:f, bi}, the present Jacobian inverse n, and the candidate Xc, Yc, as: 

Algorithm 1 (Incremental Learning, £ --* £ + 1) 

1. Initialize ne to zero; 

2. If ge > 0, terminate (c is not a margin or error vector); 

3. If ge :S 0, apply the largest possible increment ne so that (the first) one of the following 
conditions occurs: 

(a) ge = 0: Add c to margin set S, update R accordingly, and terminate; 

(b) ne = C: Add c to error set E , and terminate; 

(c) Elements of Dl migrate across S, E, and R ("bookkeeping," section 2.3): Update 
membership of elements and, if S changes, update R accordingly. 

and repeat as necessary. 

The incremental procedure is illustrated in Figure 2. Old vectors, from previously seen 
training data, may change status along the way, but the process of adding the training data 
c to the solution converges in a finite number of steps. 

2.6 Practical considerations 

The trajectory of an example incremental training session is shown in Figure 3. The algo­
rithm yields results identical to those at convergence using other QP approaches [7], with 
comparable speeds on various datasets ranging up to several thousands training points L. 

A practical on-line variant for larger datasets is obtained by keeping track only of a limited 
set of "reserve" vectors: R = {i E D I 0 < 9i < t}, and discarding all data for which 
9i ~ t. For small t, this implies a small overhead in memory over Sand E. The larger 
t, the smaller the probability of missing a future margin or error vector in previous data. 
The resulting storage requirements are dominated by that for the inverse Jacobian n, which 
scale as (is)2 where is is the number of margin support vectors, #S. 

3 Decremental "Unlearning" 

Leave-one-out (LOO) is a standard procedure in predicting the generalization power of a 
trained classifier, both from a theoretical and empirical perspective [12]. It is naturally 
implemented by decremental unlearning, adiabatic reversal of incremental learning, on 
each of the training data from the full trained solution. Similar (but different) bookkeeping 
of elements migrating across S, E and R applies as in the incremental case. 

I Matlab code and data are available at http://bach.ece.jhu.eduJpublgertlsvmlincremental. 
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Figure 3: Trajectory of coefficients Q:i as a function of iteration step during training, for 
£ = 100 non-separable points in two dimensions, with C = 10, and using a Gaussian 
kernel with u = 1. The data sequence is shown on the left. 
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Figure 4: Leave-one-out (LOO) decremental unlearning (Q:c ~ 0) for estimating general­
ization performance, directly on the training data. gc \c < -1 reveals a LOO classification 
error. 

3.1 Leave-oDe-out procedure 

LeU ~ £ - 1, by removing point c (margin or error vector) from D: D\c = D \ {c}. The 
solution {Q:i \c, b\C} is expressed in terms of {Q:i' b}, R and the removed point Xc, Yc. The 
solution yields gc \c, which determines whether leaving c out of the training set generates a 
classification error (gc \c < -1). Starting from the full i-point solution: 

Algorithm 2 (Decremental Unlearning, £ ---+ £ - 1, and LOO Classification) 

1. Ifc is not a margin or error vector: Terminate, "correct" (c is already left out, and correctly 
classified); 

2. If c is a margin or error vector with gc < -1: Terminate, "incorrect" (by default as a 
training error); 

3. If c is a margin or error vector with gc ~ -1, apply the largest possible decrement Q c so 
that (the first) one of the following conditions occurs: 

(a) gc < -1: Terminate, "incorrect"; 

(b) Q c = 0: Terminate, "correct"; 

(c) Elements of Dl migrate across S, E, and R: Update membership of elements and, 
if S changes, update R accordingly. 

and repeat as necessary. 

The leave-one-out procedure is illustrated in Figure 4. 
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Figure 5: Trajectory of LOO margin Bc as a function of leave-one-out coefficient a c. The 
data and parameters are as in Figure 3. 

3.2 Leave-one-out considerations 

If an exact LOO estimate is requested, two passes through the data are required. The 
LOO pass has similar run-time complexity and memory requirements as the incremental 
learning procedure. This is significantly better than the conventional approach to empirical 
LOO evaluation which requires £ (partial but possibly still extensive) training sessions. 
There is a clear correspondence between generalization performance and the LOO margin 
sensitivity'Yc. As shown in Figure 4, the value of the LOO margin Bc \c is obtained from 
the sequence of Bc vs. a c segments for each of the decrement steps, and thus determined 
by their slopes 'Yc. Incidentally, the LOO approximation using linear response theory in [6] 
corresponds to the first segment of the LOO procedure, effectively extrapolating the value 
of Bc \c from the initial value of 'Yc. This simple LOO approximation gives satisfactory 
results in most (though not all) cases as illustrated in the example LOO session of Figure 5. 
Recent work in statistical learning theory has sought improved generalization performance 
by considering non-uniformity of distributions in feature space [13] or non-uniformity in 
the kernel matrix eigenspectrum [10]. A geometrical interpretation of decremental unlearn­
ing, presented next, sheds further light on the dependence of generalization performance, 
through 'Yc, on the geometry of the data. 

4 Geometric Interpretation in Feature Space 

The differential Kuhn-Tucker conditions (4) and (5) translate directly in terms of the sensi­
tivities 'Yi and f3j as 

'Yi Vi E D U {c} (15) 
jES 

o = Yc + LYjf3j. (16) 
jES 

Through the nonlinear map Xi = Yi'P(Xi) into feature space, the kernel matrix elements 
reduce to linear inner products: 

Qij = YiyjK(Xi,Xj) = Xi· Xj, Vi,j (17) 

and the KT sensitivity conditions (15) and (16) in feature space become 

'Yi Xi· (Xc + L Xjf3j) + Yif3 
jES 

Vi E D U {c} (18) 



o Yc + LYj{Jj. (19) 
jES 

Since 'Yi = 0, Vi E S, (18) and (19) are equivalent to minimizing a functional: 

mf3in: We = ~(Xc + L X j {Jj)2 , (20) 
J jES 

subject to the equality constraint (19) with Lagrange parameter {J. Furthermore, the optimal 
value of We immediately yields the sensitivity 'Yc, from (18): 

'Yc = 2Wc = (Xc + L X j {Jj)2 ~ O. (21) 
jES 

In other words, the distance in feature space between sample c and its projection on S 
along (16) determines, through (21), the extent to which leaving out c affects the classifi­
cation of c. Note that only margin support vectors are relevant in (21), and not the error 
vectors which otherwise contribute to the decision boundary. 

5 Concluding Remarks 

Incremental learning and, in particular, decremental unlearning offer a simple and compu­
tationally efficient scheme for on-line SVM training and exact leave-one-out evaluation of 
the generalization performance on the training data. The procedures can be directly ex­
tended to a broader class of kernel learning machines with convex quadratic cost functional 
under linear constraints, including SV regression. The algorithm is intrinsically on-line 
and extends to query-based learning methods [1]. Geometric interpretation of decremental 
unlearning in feature space elucidates a connection, similar to [13], between generalization 
performance and the distance of the data from the subspace spanned by the margin vectors. 
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