
Incremental and Decremental Support Vector
Machine Learning

Gert Cauwenberghs*
CLSP, ECE Dept.

Johns Hopkins University
Baltimore, MD 21218

gert@jhu.edu

Tomaso Poggio
CBCL, BCS Dept.

Massachusetts Institute of Technology
Cambridge, MA 02142

tp@ai.mit.edu

Abstract

An on-line recursive algorithm for training support vector machines, one
vector at a time, is presented. Adiabatic increments retain the Kuhn­
Tucker conditions on all previously seen training data, in a number
of steps each computed analytically. The incremental procedure is re­
versible, and decremental "unlearning" offers an efficient method to ex­
actly evaluate leave-one-out generalization performance. Interpretation
of decremental unlearning in feature space sheds light on the relationship
between generalization and geometry of the data.

1 Introduction

Training a support vector machine (SVM) requires solving a quadratic programming (QP)
problem in a number of coefficients equal to the number of training examples. For very
large datasets, standard numeric techniques for QP become infeasible. Practical techniques
decompose the problem into manageable subproblems over part of the data [7, 5] or, in the
limit, perform iterative pairwise [8] or component-wise [3] optimization. A disadvantage
of these techniques is that they may give an approximate solution, and may require many
passes through the dataset to reach a reasonable level of convergence. An on-line alterna­
tive, that formulates the (exact) solution for £ + 1 training data in terms of that for £ data and
one new data point, is presented here. The incremental procedure is reversible, and decre­
mental "unlearning" of each training sample produces an exact leave-one-out estimate of
generalization performance on the training set.

2 Incremental SVM Learning

Training an SVM "incrementally" on new data by discarding all previous data except their
support vectors, gives only approximate results [II). In what follows we consider incre­
mentallearning as an exact on-line method to construct the solution recursively, one point
at a time. The key is to retain the Kuhn-Tucker (KT) conditions on all previously seen data,
while "adiabatically" adding a new data point to the solution.

2.1 Kuhn-Thcker conditions

In SVM classification, the optimal separating function reduces to a linear combination
of kernels on the training data, f(x) = E j QjYjK(xj, x) + b, with training vectors Xi

and corresponding labels Yi = ±l. In the dual formulation of the training problem, the

·On sabbatical leave at CBCL in MIT while this work was performed.

W~Whl· W~. · . . · . . · . . · . . · . .
: g -0 : :

pO ~ '~ : g,~o:

a,=O C a, C a,=C , , ,

~"" ox, ~"" x ~"" '...... Q. ... f
......... x,

", ", 0 ", , , , , , ,

support vector error vector

Figure 1: Soft-margin classification SVM training.

coefficients ai are obtained by minimizing a convex quadratic objective function under
constraints [12]

min : W = ~ '"' a·Q··a· - '"' a · + b'"' Y'a' o<"'.<c 2 ~ t tJ J ~ t ~ t t
- t_ i,j i i

(1)

with Lagrange multiplier (and offset) b, and with symmetric positive definite kernel matrix
Qij = YiyjK(Xi,Xj). The first-order conditions on W reduce to the Kuhn-Tucker (KT)
conditions:

aw
ab

L Qijaj + Yi b - 1 = yd(Xi) - 1
j

j

{
~ OJ
=OJ
~ OJ

ai = 0
0< ai < C (2)
ai = C

(3)

which partition the training data D and corresponding coefficients {ai, b}, i = 1, ... i, in
three categories as illustrated in Figure 1 [9]: the set S of margin support vectors strictly
on the margin (yd(Xi) = 1), the set E of error support vectors exceeding the margin (not
necessarily misc1assified), and the remaining set R of (ignored) vectors within the margin.

2.2 Adiabatic increments

The margin vector coefficients change value during each incremental step to keep all el­
ements in D in equilibrium, i.e., keep their KT conditions satisfied. In particular, the KT
conditions are expressed differentially as:

~9i Qic~ac + L Qij~aj + Yi~b, 'Vi E D U {c} (4)
jES

o = Ye~ae + LYj~aj (5)
jES

where a e is the coefficient being incremented, initially zero, of a "candidate" vector outside
D. Since 9i == 0 for the margin vector working set S = {Sl, .. . Sis}, the changes in
coefficients must satisfy

[
~b

1
[y, 1 ~aSl QSle

Q. = ~ae (6)

~aSts Qs~se
with symmetric but not positive-definite Jacobian Q:

[0

YSl YSts

1
YSl QS1Sl QS1Sts

Q= (7)

YS~s QSts Sl QStsSts

Thus, in equilibrium

t!.b (3t!.ac
t!.aj = (3j t!.ac ,

with coefficient sensitivities given by

\::Ij E D
(8)
(9)

(10)

where R = Q-l, and (3j == 0 for all j outside S. Substituted in (4), the margins change
according to:

t!.9i = 'Yit!.ac, \::Ii E D U {c} (11)

with margin sensitivities

'Yi = Qic + L Qij(3j + Yi(3,
jES

and 'Yi == 0 for all i in S.

2.3 Bookkeeping: upper limit on increment t!.ac

(12)

It has been tacitly assumed above that t!.ac is small enough so that no element of D moves
across S, E and/or R in the process. Since the aj and 9i change with a c through (9)
and (11), some bookkeeping is required to check each of the following conditions, and
determine the largest possible increment t!.ac accordingly:

1. gc :::; 0, with equality when c joins S;

2. a c :::; C, with equality when c joins E;

3. 0:::; aj :::; C , Vj E S, with equality 0 when j transfers from S to R, and equality C when
j transfers from S to E;

4. gi :::; 0, Vi E E, with equality when i transfers from E to S;

5. gi :::: 0, Vi E R , with equality when i transfers from R to S.

2.4 Recursive magic: R updates

To add candidate c to the working margin vector set S, R is expanded as:

The same formula applies to add any vector (not necessarily the candidate) c to S, with
parameters (3, (3j and 'Yc calculated as (10) and (12).
The expansion ofR, as incremental learning itself, is reversible. To remove a margin vector
k from S, R is contracted as:

Rij +- Rij - Rkk -lRik Rkj

where index 0 refers to the b-term.

\::Ii,j E S U {O}; i,j :f. k (14)

The R update rules (13) and (14) are similar to on-line recursive estimation of the covari­
ance of (sparsified) Gaussian processes [2].

a, /+1
c

support vector

c: a,
. c

error vector

Figure 2: Incremental learning. A new vector, initially for O:c = 0 classified with negative
margin 9c < 0, becomes a new margin or error vector.

2.5 Incremental procedure

LeU! --* i+ 1, by adding point c (candidate margin or error vector) to D : Dl+l = DiU{ c}.
Then the new solution {o:f+1, bi +1 }, i = 1, ... i + 1 is expressed in terms of the present
solution {o:f, bi}, the present Jacobian inverse n, and the candidate Xc, Yc, as:

Algorithm 1 (Incremental Learning, £ --* £ + 1)

1. Initialize ne to zero;

2. If ge > 0, terminate (c is not a margin or error vector);

3. If ge :S 0, apply the largest possible increment ne so that (the first) one of the following
conditions occurs:

(a) ge = 0: Add c to margin set S, update R accordingly, and terminate;

(b) ne = C: Add c to error set E , and terminate;

(c) Elements of Dl migrate across S, E, and R ("bookkeeping," section 2.3): Update
membership of elements and, if S changes, update R accordingly.

and repeat as necessary.

The incremental procedure is illustrated in Figure 2. Old vectors, from previously seen
training data, may change status along the way, but the process of adding the training data
c to the solution converges in a finite number of steps.

2.6 Practical considerations

The trajectory of an example incremental training session is shown in Figure 3. The algo­
rithm yields results identical to those at convergence using other QP approaches [7], with
comparable speeds on various datasets ranging up to several thousands training points L.

A practical on-line variant for larger datasets is obtained by keeping track only of a limited
set of "reserve" vectors: R = {i E D I 0 < 9i < t}, and discarding all data for which
9i ~ t. For small t, this implies a small overhead in memory over Sand E. The larger
t, the smaller the probability of missing a future margin or error vector in previous data.
The resulting storage requirements are dominated by that for the inverse Jacobian n, which
scale as (is)2 where is is the number of margin support vectors, #S.

3 Decremental "Unlearning"

Leave-one-out (LOO) is a standard procedure in predicting the generalization power of a
trained classifier, both from a theoretical and empirical perspective [12]. It is naturally
implemented by decremental unlearning, adiabatic reversal of incremental learning, on
each of the training data from the full trained solution. Similar (but different) bookkeeping
of elements migrating across S, E and R applies as in the incremental case.

I Matlab code and data are available at http://bach.ece.jhu.eduJpublgertlsvmlincremental.

..
- 2

-)

- 2 -) 20 40 60 80 100
Iteration

Figure 3: Trajectory of coefficients Q:i as a function of iteration step during training, for
£ = 100 non-separable points in two dimensions, with C = 10, and using a Gaussian
kernel with u = 1. The data sequence is shown on the left.

gc'"

-1 -------------------- -1 ~ -------------~--

'" gc

Figure 4: Leave-one-out (LOO) decremental unlearning (Q:c ~ 0) for estimating general­
ization performance, directly on the training data. gc \c < -1 reveals a LOO classification
error.

3.1 Leave-oDe-out procedure

LeU ~ £ - 1, by removing point c (margin or error vector) from D: D\c = D \ {c}. The
solution {Q:i \c, b\C} is expressed in terms of {Q:i' b}, R and the removed point Xc, Yc. The
solution yields gc \c, which determines whether leaving c out of the training set generates a
classification error (gc \c < -1). Starting from the full i-point solution:

Algorithm 2 (Decremental Unlearning, £ ---+ £ - 1, and LOO Classification)

1. Ifc is not a margin or error vector: Terminate, "correct" (c is already left out, and correctly
classified);

2. If c is a margin or error vector with gc < -1: Terminate, "incorrect" (by default as a
training error);

3. If c is a margin or error vector with gc ~ -1, apply the largest possible decrement Q c so
that (the first) one of the following conditions occurs:

(a) gc < -1: Terminate, "incorrect";

(b) Q c = 0: Terminate, "correct";

(c) Elements of Dl migrate across S, E, and R: Update membership of elements and,
if S changes, update R accordingly.

and repeat as necessary.

The leave-one-out procedure is illustrated in Figure 4.

o

- 0.2

- 0.4

<KJ~

- 0.6

- 0.8

- 1

a.
c

Figure 5: Trajectory of LOO margin Bc as a function of leave-one-out coefficient a c. The
data and parameters are as in Figure 3.

3.2 Leave-one-out considerations

If an exact LOO estimate is requested, two passes through the data are required. The
LOO pass has similar run-time complexity and memory requirements as the incremental
learning procedure. This is significantly better than the conventional approach to empirical
LOO evaluation which requires £ (partial but possibly still extensive) training sessions.
There is a clear correspondence between generalization performance and the LOO margin
sensitivity'Yc. As shown in Figure 4, the value of the LOO margin Bc \c is obtained from
the sequence of Bc vs. a c segments for each of the decrement steps, and thus determined
by their slopes 'Yc. Incidentally, the LOO approximation using linear response theory in [6]
corresponds to the first segment of the LOO procedure, effectively extrapolating the value
of Bc \c from the initial value of 'Yc. This simple LOO approximation gives satisfactory
results in most (though not all) cases as illustrated in the example LOO session of Figure 5.
Recent work in statistical learning theory has sought improved generalization performance
by considering non-uniformity of distributions in feature space [13] or non-uniformity in
the kernel matrix eigenspectrum [10]. A geometrical interpretation of decremental unlearn­
ing, presented next, sheds further light on the dependence of generalization performance,
through 'Yc, on the geometry of the data.

4 Geometric Interpretation in Feature Space

The differential Kuhn-Tucker conditions (4) and (5) translate directly in terms of the sensi­
tivities 'Yi and f3j as

'Yi Vi E D U {c} (15)
jES

o = Yc + LYjf3j. (16)
jES

Through the nonlinear map Xi = Yi'P(Xi) into feature space, the kernel matrix elements
reduce to linear inner products:

Qij = YiyjK(Xi,Xj) = Xi· Xj, Vi,j (17)

and the KT sensitivity conditions (15) and (16) in feature space become

'Yi Xi· (Xc + L Xjf3j) + Yif3
jES

Vi E D U {c} (18)

o Yc + LYj{Jj. (19)
jES

Since 'Yi = 0, Vi E S, (18) and (19) are equivalent to minimizing a functional:

mf3in: We = ~(Xc + L X j {Jj)2 , (20)
J jES

subject to the equality constraint (19) with Lagrange parameter {J. Furthermore, the optimal
value of We immediately yields the sensitivity 'Yc, from (18):

'Yc = 2Wc = (Xc + L X j {Jj)2 ~ O. (21)
jES

In other words, the distance in feature space between sample c and its projection on S
along (16) determines, through (21), the extent to which leaving out c affects the classifi­
cation of c. Note that only margin support vectors are relevant in (21), and not the error
vectors which otherwise contribute to the decision boundary.

5 Concluding Remarks

Incremental learning and, in particular, decremental unlearning offer a simple and compu­
tationally efficient scheme for on-line SVM training and exact leave-one-out evaluation of
the generalization performance on the training data. The procedures can be directly ex­
tended to a broader class of kernel learning machines with convex quadratic cost functional
under linear constraints, including SV regression. The algorithm is intrinsically on-line
and extends to query-based learning methods [1]. Geometric interpretation of decremental
unlearning in feature space elucidates a connection, similar to [13], between generalization
performance and the distance of the data from the subspace spanned by the margin vectors.

References
[1] C. Campbell, N. Cristianini and A. Smola, "Query Learning with Large Margin Classifiers," in

Proc. 17th Tnt. Con! Machine Learning (TCML2000), Morgan Kaufman, 2000.
[2] L. Csato and M. Opper, "Sparse Representation for Gaussian Process Models," in Adv. Neural

Information Processing Systems (NIPS'2000), vol. 13, 2001.
[3] T.-T. FrieB, N. Cristianini and C. Campbell, "The Kernel Adatron Algorithm: A Fast and Sim­

ple Learning Procedure for Support Vector Machines," in 15th Tnt. Con! Machine Learning,
Morgan Kaufman, 1998.

[4] T.S. Jaakkola and D. Haussler, "Probabilistic Kernel Methods," Proc. 7th Int. Workshop on
Artificial Tntelligence and Statistics, 1998.

[5] T. Joachims, "Making Large-Scale Support Vector Machine Leaming Practical," in Scholkopf,
Burges and Smola, Eds., Advances in Kernel Methods- Support Vector Learning, Cambridge
MA: MIT Press, 1998, pp 169-184.

[6] M. Opper and O. Winther, "Gaussian Processes and SVM: Mean Field Results and Leave-One­
Out," Adv. Large Margin Classifiers, A. Smola, P. Bartlett, B. SchOlkopf and D. Schuurmans,
Eds., Cambridge MA: MIT Press, 2000, pp 43-56.

[7] E. Osuna, R. Freund and F. Girosi, ''An Improved Training Algorithm for Support Vector Ma­
chines," Proc. 1997 TEEE Workshop on Neural Networks for Signal Processing, pp 276-285,
1997.

[8] J.C. Platt, "Fast Training of Support Vector Machines Using Sequential Minimum Optimiza­
tion," in Scholkopf, Burges and Smola, Eds., Advances in Kernel Methods- Support Vector
Learning, Cambridge MA: MIT Press, 1998, pp 185-208.

[9] M. Pontil and A. Verri, "Properties of Support Vector Machines," it Neural Computation,
vol. 10, pp 955-974, 1997.

[10] B. Scholkopf, J. Shawe-Taylor, A.J. Smola and R.C. Williamson, "Generalization Bounds via
Eigenvalues of the Gram Matrix," NeuroCOLT, Technical Report 99-035, 1999.

[11] N.A. Syed, H. Liu and K.K. Sung, "Incremental Learning with Support Vector Machines," in
Proc. Int. foint Con! on Artificial Intelligence (IJCAI-99), 1999.

[12] V. Vapnik, The Nature of Statistical Learning Theory,' New York: Springer-Verlag, 1995.
[13] V. Vapnik and O. Chapelle, "Bounds on Error Expectation for SVM," in Smola, Bartlett,

Scholkopf and Schuurmans, Eds., Advances in Large Margin Classifiers, Cambridge MA: MIT
Press, 2000.

