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Abstract

In many applications, data appear with a
huge number of instances as well as features.
Linear Support Vector Machines (SVM) is
one of the most popular tools to deal with
such large-scale sparse data. This paper
presents a novel dual coordinate descent
method for linear SVM with L1- and L2-
loss functions. The proposed method is sim-
ple and reaches an ε-accurate solution in
O(log(1/ε)) iterations. Experiments indicate
that our method is much faster than state
of the art solvers such as Pegasos, TRON,
SVMperf , and a recent primal coordinate de-
scent implementation.

1. Introduction

Support vector machines (SVM) (Boser et al., 1992)
are useful for data classification. Given a set of
instance-label pairs (xi, yi), i = 1, . . . , l, xi ∈ Rn, yi ∈
{−1,+1}, SVM requires the solution of the following
unconstrained optimization problem:

min
w

1

2
wTw + C

l∑
i=1

ξ(w;xi, yi), (1)

where ξ(w;xi, yi) is a loss function, and C > 0 is a
penalty parameter. Two common loss functions are:

max(1− yiwTxi, 0) and max(1− yiwTxi, 0)2. (2)

The former is called L1-SVM, while the latter is L2-
SVM. In some applications, an SVM problem appears
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with a bias term b. One often deal with this term by
appending each instance with an additional dimension:

xTi ← [xTi , 1] wT ← [wT , b]. (3)

Problem (1) is often referred to as the primal form of
SVM. One may instead solve its dual problem:

min
α

f(α) =
1

2
αT Q̄α− eTα

subject to 0 ≤ αi ≤ U,∀i, (4)

where Q̄ = Q+D, D is a diagonal matrix, and Qij =
yiyjx

T
i xj . For L1-SVM, U = C and Dii = 0, ∀i. For

L2-SVM, U =∞ and Dii = 1/(2C), ∀i.

An SVM usually maps training vectors into a high-
dimensional space via a nonlinear function φ(x). Due
to the high dimensionality of the vector variable w,
one solves the dual problem (4) by the kernel trick
(i.e., using a closed form of φ(xi)

Tφ(xj)). We call
such a problem as a nonlinear SVM. In some applica-
tions, data appear in a rich dimensional feature space,
the performances are similar with/without nonlinear
mapping. If data are not mapped, we can often train
much larger data sets. We indicate such cases as linear
SVM; these are often encountered in applications such
as document classification. In this paper, we aim at
solving very large linear SVM problems.

Recently, many methods have been proposed for lin-
ear SVM in large-scale scenarios. For L1-SVM, Zhang
(2004), Shalev-Shwartz et al. (2007), Bottou (2007)
propose various stochastic gradient descent methods.
Collins et al. (2008) apply an exponentiated gradi-
ent method. SVMperf (Joachims, 2006) uses a cutting
plane technique. Smola et al. (2008) apply bundle
methods, and view SVMperf as a special case. For
L2-SVM, Keerthi and DeCoste (2005) propose mod-
ified Newton methods. A trust region Newton method
(TRON) (Lin et al., 2008) is proposed for logistic re-
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gression and L2-SVM. These algorithms focus on dif-
ferent aspects of the training speed. Some aim at
quickly obtaining a usable model, but some achieve
fast final convergence of solving the optimization prob-
lem in (1) or (4). Moreover, among these methods,
Joachims (2006), Smola et al. (2008) and Collins et al.
(2008) solve SVM via the dual (4). Others consider the
primal form (1). The decision of using primal or dual
is of course related to the algorithm design.

Very recently, Chang et al. (2008) propose using co-
ordinate descent methods for solving primal L2-SVM.
Experiments show that their approach more quickly
obtains a useful model than some of the above meth-
ods. Coordinate descent, a popular optimization tech-
nique, updates one variable at a time by minimizing a
single-variable sub-problem. If one can efficiently solve
this sub-problem, then it can be a competitive opti-
mization method. Due to the non-differentiability of
the primal L1-SVM, Chang et al’s work is restricted to
L2-SVM. Moreover, as primal L2-SVM is differentiable
but not twice differentiable, certain considerations are
needed in solving the single-variable sub-problem.

While the dual form (4) involves bound constraints
0≤αi≤U , its objective function is twice differentiable
for both L1- and L2-SVM. In this paper, we investi-
gate coordinate descent methods for the dual problem
(4). We prove that an ε-optimal solution is obtained
in O(log(1/ε)) iterations. We propose an implemen-
tation using a random order of sub-problems at each
iteration, which leads to very fast training. Experi-
ments indicate that our method is more efficient than
the primal coordinate descent method. As Chang et al.
(2008) solve the primal, they require the easy access
of a feature’s corresponding data values. However, in
practice one often has an easier access of values per in-
stance. Solving the dual takes this advantage, so our
implementation is simpler than Chang et al. (2008).

Early SVM papers (Mangasarian & Musicant, 1999;
Friess et al., 1998) have discussed coordinate descent
methods for the SVM dual form.1 However, they
do not focus on large data using the linear kernel.
Crammer and Singer (2003) proposed an online setting
for multi-class SVM without considering large sparse
data. Recently, Bordes et al. (2007) applied a coor-
dinate descent method to multi-class SVM, but they
focus on nonlinear kernels. In this paper, we point
out that dual coordinate descent methods make crucial
advantage of the linear kernel and outperform other
solvers when the numbers of data and features are both

1Note that coordinate descent methods for uncon-
strained quadratic programming can be traced back to Hil-
dreth (1957).

large.

Coordinate descent methods for (4) are related to the
popular decomposition methods for training nonlinear
SVM. In this paper, we show their key differences and
explain why earlier studies on decomposition meth-
ods failed to modify their algorithms in an efficient
way like ours for large-scale linear SVM. We also dis-
cuss the connection to other linear SVM works such as
(Crammer & Singer, 2003; Collins et al., 2008; Shalev-
Shwartz et al., 2007).

This paper is organized as follows. In Section 2, we
describe our proposed algorithm. Implementation is-
sues are investigated in Section 3. Section 4 discusses
the connection to other methods. In Section 5, we
compare our method with state of the art implemen-
tations for large linear SVM. Results show that the
new method is more efficient.

2. A Dual Coordinate Descent Method

In this section, we describe our coordinate descent
method for L1- and L2-SVM. The optimization pro-
cess starts from an initial point α0 ∈ Rl and generates
a sequence of vectors {αk}∞k=0. We refer to the process
from αk to αk+1 as an outer iteration. In each outer
iteration we have l inner iterations, so that sequen-
tially α1, α2, . . . , αl are updated. Each outer iteration
thus generates vectors αk,i ∈ Rl, i = 1, . . . , l+ 1, such
that αk,1 = αk, αk,l+1 = αk+1, and

αk,i = [αk+1
1 , . . . , αk+1

i−1 , α
k
i , . . . , α

k
l ]T , ∀i = 2, . . . , l.

For updating αk,i to αk,i+1, we solve the following
one-variable sub-problem:

min
d

f(αk,i + dei) subject to 0 ≤ αki + d ≤ U, (5)

where ei = [0, . . . , 0, 1, 0, . . . , 0]T . The objective func-
tion of (5) is a simple quadratic function of d:

f(αk,i + dei) =
1

2
Q̄iid

2 +∇if(αk,i)d+ constant, (6)

where ∇if is the ith component of the gradient ∇f .
One can easily see that (5) has an optimum at d = 0
(i.e., no need to update αi) if and only if

∇Pi f(αk,i) = 0, (7)

where ∇P f(α) means the projected gradient

∇Pi f(α) =


∇if(α) if 0 < αi < U,

min(0,∇if(α)) if αi = 0,

max(0,∇if(α)) if αi = U.

(8)
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Algorithm 1 A dual coordinate descent method for
Linear SVM

� Given α and the corresponding w =
∑
i yiαixi.

� While α is not optimal

For i = 1, . . . , l

(a) G = yiw
Txi − 1 +Diiαi

(b)

PG =


min(G, 0) if αi = 0,

max(G, 0) if αi = U,

G if 0 < αi < U

(c) If |PG| 6= 0,
ᾱi ← αi
αi ← min(max(αi −G/Q̄ii, 0), U)
w ← w + (αi − ᾱi)yixi

If (7) holds, we move to the index i+1 without updat-

ing αk,ii . Otherwise, we must find the optimal solution
of (5). If Q̄ii > 0, easily the solution is:

αk,i+1
i = min

(
max

(
αk,ii −

∇if(αk,i)

Q̄ii
, 0

)
, U

)
. (9)

We thus need to calculate Q̄ii and ∇if(αk,i). First,
Q̄ii = xTi xi + Dii can be precomputed and stored in
the memory. Second, to evaluate ∇if(αk,i), we use

∇if(α) = (Q̄α)i − 1 =
∑l

j=1
Q̄ijαj − 1. (10)

Q̄ may be too large to be stored, so one calculates Q̄’s
ith row when doing (10). If n̄ is the average number
of nonzero elements per instance, and O(n̄) is needed
for each kernel evaluation, then calculating the ith row
of the kernel matrix takes O(ln̄). Such operations are
expensive. However, for a linear SVM, we can define

w =
∑l

j=1
yjαjxj , (11)

so (10) becomes

∇if(α) = yiw
Txi − 1 +Diiαi. (12)

To evaluate (12), the main cost is O(n̄) for calculating
wTxi. This is much smaller than O(ln̄). To apply
(12), w must be maintained throughout the coordinate
descent procedure. Calculating w by (11) takes O(ln̄)
operations, which are too expensive. Fortunately, if
ᾱi is the current value and αi is the value after the
updating, we can maintain w by

w ← w + (αi − ᾱi)yixi. (13)

The number of operations is only O(n̄). To have the
first w, one can use α0 = 0 so w = 0. In the end, we

obtain the optimal w of the primal problem (1) as the
primal-dual relationship implies (11).

If Q̄ii = 0, we have Dii = 0, Qii = xTi xi = 0, and
hence xi = 0. This occurs only in L1-SVM without
the bias term by (3). From (12), if xi = 0, then
∇if(αk,i) = −1. As U = C < ∞ for L1-SVM, the

solution of (5) makes the new αk,i+1
i = U . We can

easily include this case in (9) by setting 1/Q̄ii =∞.

Briefly, our algorithm uses (12) to compute ∇if(αk,i),
checks the optimality of the sub-problem (5) by (7),
updates αi by (9), and then maintains w by (13). A
description is in Algorithm 1. The cost per iteration
(i.e., from αk to αk+1) is O(ln̄). The main memory
requirement is on storing x1, . . . ,xl. For the conver-
gence, we prove the following theorem using techniques
in (Luo & Tseng, 1992):

Theorem 1 For L1-SVM and L2-SVM, {αk,i} gen-
erated by Algorithm 1 globally converges to an optimal
solution α∗. The convergence rate is at least linear:
there are 0 < µ < 1 and an iteration k0 such that

f(αk+1)− f(α∗) ≤ µ(f(αk)− f(α∗)),∀k ≥ k0. (14)

The proof is in Appendix 7.1. The global convergence
result is quite remarkable. Usually for a convex but
not strictly convex problem (e.g., L1-SVM), one can
only obtain that any limit point is optimal. We define
an ε-accurate solution α if f(α) ≤ f(α∗) + ε. By
(14), our algorithm obtains an ε-accurate solution in
O(log(1/ε)) iterations.2

3. Implementation Issues

3.1. Random Permutation of Sub-problems

In Algorithm 1, the coordinate descent algorithm
solves the one-variable sub-problems in the order of
α1, . . . , αl. Past results such as (Chang et al., 2008)
show that solving sub-problems in an arbitrary order
may give faster convergence. This inspires us to ran-
domly permute the sub-problems at each outer itera-
tion. Formally, at the kth outer iteration, we permute
{1, . . . , l} to {π(1), . . . , π(l)}, and solve sub-problems
in the order of απ(1), απ(2), . . . , απ(l). Similar to Al-

gorithm 1, the algorithm generates a sequence {αk,i}
such that αk,1 = αk, αk,l+1 = αk+1,1 and

αk,it =

{
αk+1
t if π−1

k (t) < i,

αkt if π−1
k (t) ≥ i.

2A constant k0 appears in (14). A newer result without
needing k0 is in Wang and Lin (2014).
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The update from αk,i to αk,i+1 is by

αk,i+1
t =αk,it +arg min

0≤αk,i
t +d≤U

f(αk,i+det) if π−1
k (t) = i.

We prove that Theorem 1 is still valid. Hence, the new
setting obtains an ε-accurate solution inO(log(1/ε)) it-
erations. A simple experiment reveals that this setting
of permuting sub-problems is much faster than Algo-
rithm 1. The improvement is also bigger than that
observed in (Chang et al., 2008) for primal coordinate
descent methods.

3.2. Shrinking

Eq. (4) contains constraints 0 ≤ αi ≤ U . If an
αi is 0 or U for many iterations, it may remain the
same. To speed up decomposition methods for non-
linear SVM (discussed in Section 4.1), the shrinking
technique (Joachims, 1998) reduces the size of the op-
timization problem without considering some bounded
variables. Below we show it is much easier to apply this
technique to linear SVM than the nonlinear case.

If A is the subset after removing some elements and
Ā = {1, . . . , l} \A, then the new problem is

min
αA

1

2
αTAQ̄AAαA + (Q̄AĀαĀ − eA)TαA

subject to 0 ≤ αi ≤ U, i ∈ A, (15)

where Q̄AA, Q̄AĀ are sub-matrices of Q̄, and αĀ is
considered as a constant vector. Solving this smaller
problem consumes less time and memory. Once (15) is
solved, we must check if the vector α is optimal for (4).
This check needs the whole gradient ∇f(α). Since

∇if(α) = Q̄i,AαA + Q̄i,ĀαĀ − 1,

if i ∈ A, and one stores Q̄i,ĀαĀ before solving (15), we
already have ∇if(α). However, for all i /∈ A, we must
calculate the corresponding rows of Q̄. This step, re-
ferred to as the reconstruction of gradients in training
nonlinear SVM, is very time consuming. It may cost
up to O(l2n̄) if each kernel evaluation is O(n̄).

For linear SVM, in solving the smaller problem (15),
we still have the vector

w =
∑

i∈A
yiαixi +

∑
i∈Ā

yiαixi

though only the first part
∑
i∈A yiαixi is updated.

Therefore, using (12), ∇f(α) is easily available. Below
we demonstrate a shrinking implementation so that re-
constructing the whole ∇f(α) is never needed.

Our method is related to what LIBSVM (Chang & Lin,
2011) uses. From the optimality condition of bound-
constrained problems, α is optimal for (4) if and only if

Algorithm 2 Coordinate descent algorithm with ran-
domly selecting one instance at a time

� Given α and the corresponding w =
∑
i yiαixi.

� While α is not optimal
– Randomly choose i ∈ {1, . . . , l}.
– Do steps (a)-(c) of Algorithm 1 to update αi.

∇P f(α) = 0, where ∇P f(α) is the projected gradient
defined in (8). We then prove the following result:

Theorem 2 Let α∗ be the convergent point of {αk,i}.

1. If α∗i = 0 and ∇if(α∗) > 0, then ∃ki such that

∀k ≥ ki, ∀s, αk,si = 0.
2. If α∗i = U and ∇if(α∗) < 0, then ∃ki such that

∀k ≥ ki, ∀s, αk,si = U .
3. lim

k→∞
max
j
∇Pj f(αk,j)= lim

k→∞
min
j
∇Pj f(αk,j)=0.

The proof is in Appendix 7.3. During the opti-
mization procedure, ∇P f(αk) 6= 0, and in general
maxj ∇Pj f(αk) > 0 and minj ∇Pj f(αk) < 0. These
two values measure how the current solution violates
the optimality condition. In our iterative procedure,
what we have are ∇if(αk,i), i = 1, . . . , l. Hence, at
the (k − 1)st iteration, we obtain

Mk−1 ≡ max
j
∇Pj f(αk−1,j),mk−1 ≡ min

j
∇Pj f(αk−1,j).

Then at each inner step of the kth iteration, before
updating αk,ii to αk,i+1

i , this element is shrunken if
one of the following two conditions holds:

αk,ii = 0 and ∇if(αk,i) > M̄k−1,

αk,ii = U and ∇if(αk,i) < m̄k−1,
(16)

where
M̄k−1 =

{
Mk−1 if Mk−1 > 0,

∞ otherwise,

m̄k−1 =

{
mk−1 if mk−1 < 0

−∞ otherwise.

In (16), M̄k−1 must be strictly positive, so we set it be
∞ if Mk−1 ≤ 0. From Theorem 2, elements satisfying
the “if condition” of properties 1 and 2 meet (16) after
certain iterations, and are then correctly removed for
optimization. To have a more aggressive shrinking,
one may multiply both M̄k−1 and m̄k−1 in (16) by a
threshold smaller than one.

Property 3 of Theorem 2 indicates that with a toler-
ance ε,

Mk −mk < ε (17)

is satisfied after a finite number of iterations. Hence
(17) is a valid stopping condition. We also use it for
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Table 1. A comparison between decomposition methods
(Decomp.) and dual coordinate descent (DCD). For both
methods, we consider that one αi is updated at a time. We
assume Decomp. maintains gradients, but DCD does not.
The average number of nonzeros per instance is n̄.

Nonlinear SVM Linear SVM
Decomp. DCD Decomp. DCD

Update αi O(1) O(ln̄) O(1) O(n̄)
Maintain ∇f(α) O(ln̄) NA O(ln̄) NA

smaller problems (15). If at the kth iteration, (17)
for (15) is reached, we enlarge A to {1, . . . , l}, set
M̄k =∞, m̄k = −∞ (so no shrinking at the (k + 1)st
iteration), and continue regular iterations. Thus, we
do shrinking without reconstructing gradients.

In Appendix 7.4, we provide an algorithm to show the
convergence and finite termination of the Algorithm 1
with shrinking.

3.3. An Online Setting

In some applications, the number of instances is huge,
so going over all α1, . . . , αl causes an expensive outer
iteration. Instead, one can randomly choose an index
ik at a time, and update only αik at the kth outer
iteration. A description is in Algorithm 2. The setting
is related to (Crammer & Singer, 2003; Collins et al.,
2008). See also the discussion in Section 4.2.

4. Relations with Other Methods

4.1. Decomposition Methods for Nonlinear
SVM

Decomposition methods are one of the most popular
approaches for training nonlinear SVM. As the kernel
matrix is dense and cannot be stored in the computer
memory, decomposition methods solve a sub-problem
of few variables at each iteration. Only a small num-
ber of corresponding kernel columns are needed, so the
memory problem is resolved. If the number of vari-
ables is restricted to one, a decomposition method is
like the online coordinate descent in Section 3.3, but
it differs in the way it selects variables for updating.
It has been shown (Keerthi & DeCoste, 2005) that,
for linear SVM decomposition methods are inefficient.
On the other hand, here we are pointing out that dual
coordinate descent is efficient for linear SVM. There-
fore, it is important to discuss the relationship between
decomposition methods and our method.

In early decomposition methods that were first pro-
posed (Osuna et al., 1997; Platt, 1998), variables min-
imized at an iteration are selected by certain heuristics.
However, subsequent developments (Joachims, 1998;
Chang & Lin, 2011; Keerthi et al., 2001) all use gra-

dient information to conduct the selection. The main
reason is that maintaining the whole gradient does not
introduce extra cost. Here we explain the detail by as-
suming that one variable of α is chosen and updated at
a time3. To set-up and solve the sub-problem (6), one
uses (10) to calculate ∇if(α). If O(n̄) effort is needed
for each kernel evaluation, obtaining the ith row of
the kernel matrix takes O(ln̄) effort. If instead one
maintains the whole gradient, then ∇if(α) is directly

available. After updating αk,ii to αk,i+1
i , we obtain Q̄’s

ith column (same as the ith row due to the symmetry
of Q̄), and calculate the new whole gradient:

∇f(αk,i+1) = ∇f(αk,i) + Q̄:,i(α
k,i+1
i − αk,ii ), (18)

where Q̄:,i is the ith column of Q̄. The cost is O(ln̄)
for Q̄:,i and O(l) for (18). Therefore, maintaining the
whole gradient does not cost more. As using the whole
gradient implies fewer iterations (i.e., faster conver-
gence due to the ability to choose for updating the vari-
able that violates optimality most), one should take
this advantage. However, the situation for linear SVM
is very different. With the different way (12) to calcu-
late ∇if(α), the cost to update one αi is only O(n̄). If
we still maintain the whole gradient, evaluating (12) l
times takes O(ln̄) effort. We gather this comparison of
different situations in Table 1. Clearly, for nonlinear
SVM, one should use decomposition methods by main-
taining the whole gradient. However, for linear SVM,
if l is large, the cost per iteration without maintaining
gradients is much smaller than that with. Hence, the
coordinate descent method can be faster than the de-
composition method by using many cheap iterations.

An earlier attempt to speed up decomposition methods
for linear SVM is (Kao et al., 2004). However, it failed
to derive our method here because it does not give up
maintaining gradients.

4.2. Existing Linear SVM Methods

We discussed in Section 1 and other places the dif-
ference between our method and a primal coordinate
descent method (Chang et al., 2008). Below we de-
scribe the relations with other linear SVM methods.

We mentioned in Section 3.3 that our Algorithm 2 is
related to the online mode in (Collins et al., 2008).
They aim at solving multi-class and structured prob-
lems. At each iteration an instance is used; then a
sub-problem of several variables is solved. They ap-
proximately minimize the sub-problem, but for two-
class case, one can exactly solve it by (9). For the

3Solvers like LIBSVM update at least two variables due
to a linear constraint in their dual problems. Here (4) has
no such a constraint, so selecting one variable is possible.



A Dual Coordinate Descent Method for Large-scale Linear SVM

Table 2. On the right training time for a solver to reduce the primal objective value to within 1% of the optimal value;
see (20). Time is in seconds. The method with the shortest running time is boldfaced. Listed on the left are the statistics
of data sets: l is the number of instances and n is the number of features.

Data set
Data statistics Linear L1-SVM Linear L2-SVM

l n # nonzeros DCDL1 Pegasos SVMperf DCDL2 PCD TRON
a9a 32,561 123 451,592 0.2 1.1 6.0 0.4 0.1 0.1
astro-physic 62,369 99,757 4,834,550 0.2 2.8 2.6 0.2 0.5 1.2
real-sim 72,309 20,958 3,709,083 0.2 2.4 2.4 0.1 0.2 0.9
news20 19,996 1,355,191 9,097,916 0.5 10.3 20.0 0.2 2.4 5.2
yahoo-japan 176,203 832,026 23,506,415 1.1 12.7 69.4 1.0 2.9 38.2
rcv1 677,399 47,236 49,556,258 2.6 21.9 72.0 2.7 5.1 18.6
yahoo-korea 460,554 3,052,939 156,436,656 8.3 79.7 656.8 7.1 18.4 286.1

batch setting, our approach is different from theirs.
The algorithm for multi-class problems in (Crammer &
Singer, 2003) is also similar to our online setting. For
the two-class case, it solves (1) with the loss function
max(−yiwTxi, 0), which is different from (2). They
do not study data with a large number of features.

Next, we discuss the connection to stochastic gradient
descent (Shalev-Shwartz et al., 2007; Bottou, 2007).
The most important step of this method is the follow-
ing update of w:

w ← w − η∇w(yi,xi), (19)

where ∇w(yi,xi) is the sub-gradient of the approxi-
mate objective function:

wTw/2 + C max(1− yiwTxi, 0),

and η is the learning rate (or the step size). While our
method is dual-based, we maintain w by (13). Both
(13) and (19) use one single instance xi, but they take
different directions yixi and ∇w(yi,xi). The selection
of the learning rate η may be the subtlest thing in
stochastic gradient descent, but for our method this
is never a concern. The step size (αi − ᾱi) in (13) is
governed by solving a sub-problem from the dual.

5. Experiments

In this section, we analyze the performance of our dual
coordinate descent algorithm for L1- and L2-SVM. We
compare our implementation with state of the art lin-
ear SVM solvers. We also investigate how the shrink-
ing technique improves our algorithm.

Table 2 lists the statistics of data sets. Four of them
(a9a, real-sim, news20, rcv1) are at http://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets. The
set astro-physic is available upon request from
Thorsten Joachims. Except a9a, all others are from
document classification. Past results show that lin-
ear SVM performs as well as kernelized ones for such
data. To estimate the testing accuracy, we use a strat-
ified selection to split each set to 4/5 training and 1/5

testing. We briefly describe each set below. Details
can be found in (Joachims, 2006) (astro-physic) and
(Lin et al., 2008) (others). a9a is from the UCI “adult”
data set. real-sim includes Usenet articles. astro-physic
includes documents from Physics Arxiv. news20 is a
collection of news documents. yahoo-japan and yahoo-
korea are obtained from Yahoo!. rcv1 is an archive of
manually categorized newswire stories from Reuters.

We compare six implementations of linear SVM. Three
solve L1-SVM, and three solve L2-SVM.

DCDL1 and DCDL2: the dual coordinate descent
method with sub-problems permuted at each outer it-
eration (see Section 3.1). DCDL1 solves L1-SVM while
DCDL2 solves L2-SVM. We omit the shrinking setting.

Pegasos: the primal estimated sub-gradient solver
(Shalev-Shwartz et al., 2007) for L1-SVM. The source
is at http://ttic.uchicago.edu/~shai/code.

SVMperf (Joachims, 2006): a cutting plane method for
L1-SVM. We use the latest version 2.1. The source is
at http://svmlight.joachims.org/svm_perf.html.

TRON: a trust region Newton method (Lin et al., 2008)
for L2-SVM. We use the software LIBLINEAR version
1.22 with option -s 2 (http://www.csie.ntu.edu.
tw/~cjlin/liblinear).

PCD: a primal coordinate descent method for L2-SVM
(Chang et al., 2008).

Since (Bottou, 2007) is related to Pegasos, we do not
present its results. We do not compare with another
online method Vowpal Wabbit (Langford et al., 2007)
either as it has been made available only very recently.
Though a code for the bundle method (Smola et al.,
2008) is available, we do not include it for comparison
due to its closeness to SVMperf . All sources used for
our comparisons are available at http://csie.ntu.

edu.tw/~cjlin/liblinear/exp.html.

We set the penalty parameter C = 1 for comparison4.
For all data sets, the testing accuracy does not increase

4The equivalent setting for Pegasos is λ = 1/(Cl). For
SVMperf , its penalty parameter is Cperf = 0.01Cl.
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(a) L1-SVM: astro-physic (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1-SVM: rcv1 (f) L2-SVM: rcv1

Figure 1. Time versus the relative error (20). DCDL1-S,
DCDL2-S are DCDL1, DCDL2 with shrinking. The dotted
line indicates the relative error 0.01. Time is in seconds.

after C ≥ 4. All the above methods are implemented
in C/C++ with double precision. Some implementa-
tions such as (Bottou, 2007) use single precision to
reduce training time, but numerical inaccuracy may
occur. We do not include the bias term by (3).

To compare these solvers, we consider the CPU time
of reducing the relative difference between the primal
objective value and the optimum to within 0.01:

|fP (w)− fP (w∗)|/|fP (w∗)| ≤ 0.01, (20)

where fP is the objective function of (1), and fP (w∗)
is the optimal value. Note that for consistency, we use
primal objective values even for dual solvers. The ref-
erence solutions of L1- and L2-SVM are respectively
obtained by solving DCDL1 and DCDL2 until the du-
ality gaps are less than 10−6. Table 2 lists the re-
sults. Clearly, our dual coordinate descent method
for both L1- and L2-SVM is significantly faster than
other solvers. To check details, we choose astro-physic,
news20, rcv1, and show the relative error along time
in Figure 1. In Section 3.2, we pointed out that the
shrinking technique is very suitable for DCD. In Fig-
ure 1, we also include them (DCDL1-S and DCDL2-S)
for comparison. Like in Table 2, our solvers are effi-
cient for both L1- and L2-SVM. With shrinking, its
performance is even better.

(a) L1-SVM: astro-physic (b) L2-SVM: astro-physic

(c) L1-SVM: news20 (d) L2-SVM: news20

(e) L1-SVM: rcv1 (f) L2-SVM: rcv1

Figure 2. Time versus the difference of testing accuracy be-
tween the current model and the reference model (obtained
using strict stopping conditions). Time is in seconds.

Another evaluation is to consider how fast a solver ob-
tains a model with reasonable testing accuracy. Using
the optimal solutions from the above experiment, we
generate the reference models for L1- and L2-SVM. We
evaluate the testing accuracy difference between the
current model and the reference model along the train-
ing time. Figure 2 shows the results. Overall, DCDL1
and DCDL2 are more efficient than other solvers. Note
that we omit DCDL1-S and DCDL2-S in Figure 2, as
the performances with/without shrinking are similar.

Among L1-SVM solvers, SVMperf is competitive with
Pegasos for small data. But in the case of a huge num-
ber of instances, Pegasos outperforms SVMperf . How-
ever, Pegasos has slower convergence than DCDL1. As
discussed in Section 4.2, the learning rate of stochas-
tic gradient descent may be the cause, but for DCDL1
we exactly solve sub-problems to obtain the step size
in updating w. Also, Pegasos has a jumpy test set
performance while DCDL1 gives a stable behavior.

In the comparison of L2-SVM solvers, DCDL2 and
PCD are both coordinate descent methods. The for-
mer one is applied to the dual, but the latter one to
the primal. DCDL2 has a closed form solution for each
sub-problem, but PCD has not. The cost per PCD
outer iteration is thus higher than DCDL2. There-
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fore, while PCD is very competitive (only second to
DCDL1/DCDL2 in Table 2), DCDL2 is even better.
Regarding TRON, as a Newton method, it possesses
fast final convergence. However, since it costs more
time at each iteration, it hardly generates a reasonable
model quickly. From the experiment results, DCDL2
converges as fast as TRON, but also performs well in
early iterations.

Due to the space limitation, we give the following ob-
servations without details. First, Figure 1 indicates
that our coordinate descent method converges faster
for L2-SVM than L1-SVM. As L2-SVM has the diag-
onal matrix D with Dii = 1/(2C), we suspect that
its Q̄ is better conditioned, and hence leads to faster
convergence. Second, all methods have slower conver-
gence when C is large. However, small C’s are usually
enough as the accuracy is stable after a threshold. In
practice, one thus should try from a small C. More-
over, if n � l and C is too large, then our DCDL2 is
slower than TRON or PCD (see problem a9a in Table
2, where the accuracy does not change after C ≥ 0.25).
If n � l, clearly one should solve the primal, whose
number of variables is just n. Such data are not our fo-
cus. Indeed, with a small number of features, one usu-
ally maps data to a higher space and train a nonlinear
SVM. Third, we have checked the online Algorithm 2.
Its performance is similar to DCDL1 and DCDL2 (i.e.,
batch setting without shrinking). Fourth, we have in-
vestigated real document classification which involves
many two-class problems. Using the proposed method
as the solver is more efficient than using others.

6. Discussion and Conclusions

We can apply the proposed method to solve regular-
ized least square problems, which have the loss func-
tion (1−yiwTxi)

2 in (1). The dual is simply (4) with-
out constraints, so the implementation is simpler.

In summary, we present and analyze an efficient dual
coordinate decent method for large linear SVM. It is
very simple to implement, and possesses sound op-
timization properties. Experiments show that our
method is faster than state of the art implementations.
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7. Proofs

7.1. Proof of Theorem 1

We consider the analysis in (Luo & Tseng, 1992),
which studies coordinate descent methods for prob-
lems in the following form:

min
α

f(α)

subject to Li ≤ αi ≤ Ui, (21)

where
f(α) ≡ g(Eα) + bTα,

f(·) and g(·) are proper closed functions, E is a con-
stant matrix, and Li ∈ [−∞,∞), Ui ∈ (−∞,∞] are
lower/upper bounds. They establish the linear conver-
gence of the coordinate descent method if (21) satisfies
the following conditions:

1. E has no zero column.

2. The set of optimal solutions for (21), denoted by
A∗, is nonempty.

3. The function g is strongly convex and twice differ-
entiable everywhere.

We explain that both L1-SVM and L2-SVM satisfy the
above conditions. Let E be an (n+ l)× l matrix

E =

[
y1x1, . . . , ylxl√

D

]
, (22)

and b = −e. Then f(α) defined in (4) can be repre-
sented as g(Eα) + bTα with g(β) = βTβ/2. Clearly,
f(α) and g(β) are closed as they are continuous.
Moreover, g(β) is strongly convex and twice differen-
tiable everywhere. Regarding the set of optimal solu-
tions, we consider Weierstrass’ Theorem, which states
that any continuous function on a compact set at-
tains its minimum. For L1-SVM, the feasible region
{α | 0 ≤ αi ≤ U} is compact. For L2-SVM, we check
the level set {α | f(α) ≤ 0, αi ≥ 0}. Since Q is posi-
tive semidefinite,

1

4C
αTα− eTα ≤ −1

2
αTQα ≤ 0.

Hence,

1

4C

l∑
i=1

(αi − 2C)2 ≤ lC implies αi ≤ 2C + 2C
√
l.

The level set is thus compact. Therefore, for both L1-
and L2-SVM, their optimal solution sets are nonempty.

Next, we check if E has zero column. This situation
happens only if xi = 0 and Dii = 0, the case of L1-
SVM without a bias term. Let A = {i | xi 6= 0}.
We explain that elements not in this set can be elim-
inated for consideration, so we still have a matrix E
without zero column. As Qij = 0, if i /∈ A or j /∈ A,
essentially we are minimizing

1

2
αTAQ̄AAαA − eTAαA −

∑
i/∈A

αi.

Clearly, if i /∈ A, then αi = U is optimal. Moreover,
∇if(α) = −1 (also see the discussion in Section 2),
so at the first iteration of Algorithm 1, αi is set to
U and remains the same forever. Therefore, after the
first iteration, we minimize a function of αA, which
has a nonzero matrix E. Finally, we have all condi-
tions ready. Theorem 2.1 of (Luo & Tseng, 1992) then
implies Theorem 1.

7.2. Lemma 1

To prove Theorems 2 and 3, we need the following
lemma.
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Lemma 1 Assume {αk} is an infinite sequence of
solving (4) and α∗ is any optimal solution. If {αk}
satisfies the following conditions:

1. αk+1 = αk + d̄ei for some index i, and d̄ is the
optimal solution of

min
d

f(αk + dei) subeject to 0 ≤ αki + d ≤ U,
(23)

2. every limit point of {αk} is a stationary point,

then we have

1. If α∗i = 0 and ∇if(α∗) > 0, then ∃ki such that
∀k ≥ ki, αki = 0.

2. If α∗i = U and ∇if(α∗) < 0, then ∃ki such that
∀k ≥ ki, αki = U .

3. lim
k→∞

∇P f(αk) = 0.

Proof. From the primal-dual relation of SVM, we
have

∑l
i=1 yiα

∗
ixi = w∗, where w∗ is the optimal solu-

tion of the primal. Since primal problem (1) is strictly
convex, w∗ is unique. In Appendix 7.1, we show that
{αk} for both L1- and L2-SVM is in a compact set.
With condition 2,

lim
k→∞

l∑
i=1

yiα
k
i xi = lim

k→∞
wk = w∗.

This indicates that for all i,

lim
k→∞

∇if(αk) = lim
k→∞

yi(w
k)Txi− 1 = yi(w

∗)Txi− 1.

(24)
We define d∗i ≡ ∇if(α∗) = yi(w

∗)Txi − 1. By (24),
there exists an index ki such that for all k ≥ ki,

∇if(αk) > 0 if d∗i > 0,

∇if(αk) < 0 if d∗i < 0.
(25)

When we update αk to αk+1 by changing the ith ele-
ment, from the KKT condition of the sub-problem,

∇if(αk+1) > 0⇒ αk+1
i = 0,

∇if(αk+1) < 0⇒ αk+1
i = U.

(26)

Therefore, after k ≥ ki, either αi is upper- (lower-)
bounded forever or 0 < αi < U and the ith element
is never selected for update. The second situation im-
plies that there is a limit point ᾱ with 0 < ᾱi < U and
∇if(ᾱ) 6= 0, a contradiction to the assumption that
every limit point is optimal. Hence for k > ki,

αki = 0 if d∗i > 0,

αki = U if d∗i < 0,
(27)

which are the the first and the second results. This
result and (25) imply for k ≥ ki,

∇Pi f(αk) = 0 if d∗i > 0 or d∗i < 0. (28)

For any index i with d∗i = 0, (24) im-
plies that limk→∞∇Pi f(αk) = 0. With (28),
limk→∞∇P f(αk) = 0.

7.3. Proof of Theorem 2

From Theorem 1 and the update rule (9), Algorithm
1 satisfies the two conditions in Lemma 1. The results
in Lemma 1 directly prove Theorem 2.

7.4. Finite Termination of the Algorithm 1
with Shrinking

Algorithm 3 gives details of Algorithm 1 with the
shrinking heuristic. In Algorithm 3, the while loop
generates a sequence {αk | k = 1, 2, . . . }. To ob-
tain αk+1 from αk, Step 2 of Algorithm 3 sequen-
tially updates each component of αk by solving (5).
Vectors αk,i, i = 1, . . . , l + 1 are generated so that
αk,1 = αk, . . . ,αk,l+1 = αk+1. Notice that Step 2
only updates unshrunken variables in A, so we de-
fine αk,i+1 = αk,i if i /∈ A. Moreover, M̄ and m̄
in Algorithm 3 correspond to M̄k−1 and m̄k−1 in (16),
respectively. M and m are Mk and mk, respectively.
The random permutation of sub-problems discussed in
Section 3.1 can be easily incorporated to Algorithm 3,
though we omit it here for simplification. In this sec-
tion, we show that Algorithm 3 terminates after finite
iterations.

We assume C > 0 as otherwise ∇P f(α) in (8) is not
well defined.

Lemma 2 Consider the sub-problem (23) of updating
the ith element. We have

f(αk,i)− f(αk,i+1) ≥ 1

2
Q̄ii(α

k,i
i − α

k,i+1
i )2.

Proof. From the KKT condition (26) of the sub-
problem,

∇i(αk,i+1) > 0⇒ αk,ii − α
k,i+1
i ≥ 0,

∇i(αk,i+1) < 0⇒ αk,ii − α
k,i+1
i ≤ 0.

Therefore,

f(αk,i)− f(αk,i+1) = ∇if(αk,i+1)(αk,ii − α
k,i+1
i )+

1

2
Q̄ii(α

k,i
i − α

k,i+1
i )2,

≥ 1

2
Q̄ii(α

k,i
i − α

k,i+1
i )2.
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Algorithm 3 Dual coordinate descent with shrinking

� Given ε,α and the corresponding w =
∑
i yiαixi.

� Let M̄ ←∞, m̄← −∞.
� Let A← {1, . . . , l}.
� While

1. Let M ← −∞,m←∞.
2. For all i ∈ A

(a) G = yiw
Txi − 1 +Diiαi

(b) PG← 0
If αi = 0,
A← A\{i} and CONTINUE ifG > M̄
PG← G if G < 0

Else If αi = U ,
A← A\{i} and CONTINUE if G < m̄
PG← G if G > 0

Else
PG← G

(c) M ← max(M,PG),m← min(m,PG)
(d) If |PG| 6= 0,

ᾱi ← αi
αi ← min(max(αi −G/Q̄ii, 0), U)
w ← w + (αi − ᾱi)yixi

3. If M −m ≤ ε and |M | ≤ ε and |m| ≤ ε
(a) If A = {1, . . . , l},

BREAK.
Else,
A ← {1, . . . , l}, M̄ ← ∞, m̄ ← −∞.
(i.e., no shrinking at the next iteration)

4. If M ≤ 0, then M̄ ←∞. Else M̄ ←M .
5. If m ≥ 0, then m̄← −∞. Else m̄← m.

Theorem 3 Algorithm 3 terminates in finite itera-
tions.

Proof. Similar to the proof of Theorem 1, for
any index i with Q̄ii = 0, after the first iteration,
∇if(α) = −1, and αi remains at U . Thus, we only
consider the index set {i | Q̄ii > 0}.

If Algorithm 3 does not terminate, it will generate an
infinite sequence {αk | k = 1, 2, . . . }. Section 3.2 indi-
cates that if the problem of using variables in A sat-
isfies the stopping condition (15) at iteration k, then
A becomes the whole set {1, . . . , l} (step 3a of Algo-
rithm 3), and all α’s elements are checked at the next
iteration. We collect those iterations as a subsequence
{αk}R.

We claim that {αk}R is an infinite sequence. If it is
finite, consider iterations after the last element of R.
Since l is finite, there exists a subset A ⊂ {1, . . . , l}
and a number p such that all iterations after the
pth iteration are for solving the problem (15) of αA.
However, Property 3 of Theorem 2 indicates that our

(a) L1-SVM: a9a (b) L2-SVM: a9a

(c) L1-SVM: real-sim (d) L2-SVM: real-sim

(e) L1-SVM: yahoo-japan (f) L2-SVM: yahoo-japan

(g) L1-SVM: yahoo-korea (h) L2-SVM: yahoo-korea

Figure 3. Time versus the relative error (20). DCDL1-S,
DCDL2-S are DCDL1, DCDL2 with shrinking. The dotted
line indicates the relative error 0.01. Time is in seconds.

procedure will satisfy (17) in finite iterations. Thus,
{αk | k = 1, 2, . . . } is a finite sequence, a contradiction
to the assumption that Algorithm 3 does not termi-
nate.

Now consider a subsequence R̄ ⊂ R such that {αk |
k ∈ R̄} converges to α∗. We then claim that

lim
k∈R̄,k→∞

αk,i = α∗,∀i = 1, . . . , l + 1. (29)

Assume σ = mini Q̄ii. Since we only consider the in-
dex set {i | Q̄ii > 0}, we have σ > 0. Then from
Lemma 2 we have

f(αk,1)− f(αk,2) ≥ σ

2
(αk,11 − αk,21 )2. (30)

Furthermore, the sequence {f(αk,i)} is decreasing,
and condition 2 in the proof of Theorem 1 shows that
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(a) L1-SVM: a9a (b) L2-SVM: a9a

(c) L1-SVM: real-sim (d) L2-SVM: real-sim

(e) L1-SVM: yahoo-japan (f) L2-SVM: yahoo-japan

(g) L1-SVM: yahoo-korea (h) L2-SVM: yahoo-korea

Figure 4. Time versus the difference of testing accuracy be-
tween the current model and the reference model (obtained
using strict stopping conditions). Time is in seconds.

{f(αk,i)} is lower bounded. Thus,

lim
k∈R̄,k→∞

f(αk,1)− f(αk,2) = 0.

Taking the limit of (30), we have

lim
k∈R̄,k→∞

αk,2 = lim
k∈R̄,k→∞

αk,1 = lim
k∈R̄,k→∞

αk = α∗.

By similar derivations, we obtain (29).

If α∗ is not a stationary point, there exists an index
t ∈ {1, . . . , l} such that ∇Pt f(α∗) 6= 0. Assume d̄ is
the optimum of the sub-problem

min
d

f(α∗ + det) subject to 0 ≤ α∗t + d ≤ U.

We have
f(α∗ + d̄et) < f(α∗) (31)

from the assumption that ∇Pt f(α∗) 6= 0. Besides, as
αk,t+1 solves the sub-problem (6),

f
(
min

(
max

(
αk,t + d̄et,0

)
, Ue

))
≥ f(αk,t+1),

where min(·), max(·) are component-wisely operated,
and e is the vector of ones. Taking the limit of both
sides, we get f(α∗ + d̄et) ≥ f(α∗), a contradiction to
(31). Thus, any limit point of {αk}R is an optimal
solution.

Since any limit point of {αk}R is optimal, and the
update rule ensures the objective value is decreasing
through k = 1, 2, . . . , we have that for all i any limit
point of {αk,i} is an optimal solution. Then from
Lemma 1, ∇P f(αk,i) globally converges to 0, so the
stopping condition Mk − mk ≤ ε, |Mk| ≤ ε, and
|mk| ≤ ε is satisfied in finite iterations.5

7.5. Convergence of Algorithm 2

Nesterov (2012) studied the convergence of random
coordinate descent methods, where Algorithm 2 is a
special case. In this section, we rewrite his proof to
specifically prove the convergence of Algorithm 2. As-
sume {αk}∞k=1 is the sequence generated by Algorithm
2 and at the kth iteration, ik is selected so that dkik is
updated. We prove the following convergence result:

Theorem 4 Let

φk ≡ Ei1,...,ik−1
f(αk).

For any k ≥ 1,

φk − f(α∗) ≤ 1

l + k − 1

(
1

2
r2
1 + f(α1)− f(α∗)

)
.

In addition, if f(α) is strongly convex in ‖ · ‖1 with a

5Note added in October 2020: while a stopping condi-
tion M − m ≤ ε works well in practice, we must ensure
that the following situation does not occur.

M,m� 0 or M,m� 0

but
M −m ≤ ε.

For example, because

∇if(0) = −1, ∀i,

we have M = m = −1 and they satisfy M − m ≤ ε.
From the optimality condition, for an approximate solu-
tion, |M | and |m| must be close to zero. Thus we add
|M | ≤ ε, |m| ≤ ε into the stopping condition. In fact we
can use only |M | ≤ ε, |m| ≤ ε as the stopping condition,
but for historical reason we keep M −m ≤ ε as the main
condition to check.
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constant σ, then

φk − f(α∗) ≤

(1− 2σ

l(1 + σ)
)k−1(

1

2
r2
1 + f(α1)− f(α∗)). (32)

Here ‖ · ‖1 is defined by

‖d‖21 ≡
l∑
i=1

Q̄iid
2
i ,

α∗ is an optimal solution, and

r2
k ≡ ‖αk −α∗‖21 =

l∑
i=1

Q̄ii(α
k
i − α∗i )2. (33)

Proof. By the definition of r2
k in (33), we have

r2
k+1

= r2
k + 2Q̄ik,ik(αk+1

ik
− αkik)(αkik − α

∗
ik

)

+Q̄ik,ik(αk+1
ik
− αkik)2

= r2
k + 2Q̄ik,ik(αk+1

ik
− αkik)(αk+1

ik
− α∗ik)

−Q̄ik,ik(αk+1
ik
− αkik)2 (34)

≤ r2
k + 2∇ikf(αk)(α∗ik − α

k+1
ik

)

−Q̄ik,ik(αk+1
ik
− αkik)2 (35)

= r2
k + 2∇ikf(αk)(α∗ik − α

k
ik

)

−2

(
∇ikf(αk)(αk+1

ik
− αkij ) +

1

2
Q̄ik,ik(αk+1

ik
− αkik)2

)
= r2

k + 2∇ikf(αk)(α∗ik − α
k
ik

)

+2

(
f(αk)− f(αk+1)

)
. (36)

From (34) to (35), we use the optimality condition of
the sub-problem (5):

∇ikf(αk+1)(α∗ik − α
k+1
ik

) ≥ 0

and

∇ikf(αk+1) = ∇ikf(αk) + Q̄ik,ik(αk+1
ik
− αkik).

Taking expectation on ik, (36) becomes

Eik [
1

2
r2
k+1 + f(αk+1)− f(α∗)]

≤ 1

2
r2
k + f(αk)− f(α∗)

+
1

l
∇f(αk)T (α∗ −αk). (37)

Using (37), for any k ≥ 1,

Ei1,...,ik [
1

2
r2
k+1 + f(αk+1)− f(α∗)]

≤ 1

2
r2
1 + f(α1)− f(α∗)

+
1

l

k∑
j=1

Ei1,...,ij−1
[∇f(αj)T (α∗ −αj)]. (38)

Since r2
k+1/2 ≥ 0 , (38) becomes

1

2
r2
1 + f(α1)− f(α∗)

≥Ei1,...,ik [f(αk+1)]− f(α∗)

+
1

l

k∑
j=1

Ei1,...,ij−1 [∇f(αj)T (αj −α∗)] (39)

≥φk+1 − f(α∗) +
1

l

k∑
j=1

(φj − f(α∗)) (40)

≥(1 +
k

l
)(φk+1 − f(α∗)). (41)

The derivation from (39) to (40) is by

f(α∗) ≥ f(αj) +∇f(αj)T (α∗ −αj)

and (40) to (41) is by the fact that f(αk) is decreasing.

Then, (41) leads to the first result of the theorem. For
the second result, we need the following property that
there exists σ > 0 such that

∇f(α)T (α−α∗)

≥f(α)− f(α∗) +
σ

2
‖α−α∗‖21 (42)

≥σ‖α−α∗‖21. (43)

We obtain (42) and (43) respectively from that f(α)
is strongly convex in ‖ · ‖1 and the optimality at α∗:

f(α∗) ≥ f(α) +∇f(α)T (α∗ −α) +
σ

2
‖α−α∗‖21

and

f(α) ≥ f(α∗) +∇f(α∗)T (α−α∗) +
σ

2
‖α−α∗‖21

≥ f(α∗) +
σ

2
‖α−α∗‖21.
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Using (42)-(43), (37) becomes

Eik [
1

2
r2
k+1 + f(αk+1)− f(α∗)]

≤ 1

2
r2
k + f(αk)− f(α∗) +

β

l
∇f(αk)T (α∗ −αk)

+
1− β
l
∇f(αk)T (α∗ −αk)

≤ 1

2
r2
k + f(αk)− f(α∗)− β

l

(
f(αk)− f(α∗)

+
σ

2
‖αk −α∗‖21

)
− 1− β

l
σ‖αk −α∗‖21

=
1

2
r2
k + f(αk)− f(α∗)− β

l

(
f(αk)− f(α∗)

+
σr2

k

2

)
− 1− β

l
σr2

k, (44)

where β is any real number in [0, 1]. Let β = 2σ
1+σ and

we have

(44) = (1− 2σ

l(1 + σ)
)(

1

2
r2
k + f(αk)− f(α∗)). (45)

Taking the expectation of (45) on i1, . . . , ik, we obtain
the second result (32). �

Next, we show that the objective function of L2-SVM
is strongly convex in ‖·‖1. Because Q is positive semi-
definite and Q̄ = Q+D in (4) for L2-SVM, we have

(∇f(α1)−∇f(α2))T (α1 −α2)

=(α1 −α2)T Q̄(α1 −α2)

=(α1 −α2)T (Q+D)(α1 −α2)

≥
l∑
i=1

1

2C
(α1
i − α2

i )
2. (46)

Define

σ =
1

2C maxi(Q̄ii)
,

then

(46) ≥ σ
l∑
i=1

Q̄ii(α
1
i − α2

i )
2 = σ‖α1 −α2‖21.

Thus, f(α) is strongly convex in ‖ · ‖1, so the sec-
ond result holds for L2-SVM. For L1-SVM, if Q is
strictly convex, we can use a similar argument with
1

2C replaced by the smallest positive eigen-value of Q
to show that f(α) is strongly convex in ‖ · ‖1. In this
case the second result holds for L1-SVM.

8. Detailed Results of a9a, real-sim,
yahoo-japan and yahoo-korea Data Sets

In Figures 1 and 2, we presented the results of astro-
physic, news20 and rcv1. Figures 3 and 4 show the
comparison results of other data sets.


